Search results

1 – 10 of 41
Article
Publication date: 29 March 2024

Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…

Abstract

Purpose

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.

Design/methodology/approach

2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.

Findings

The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.

Originality/value

Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 October 2023

Omotayo Farai, Nicole Metje, Carl Anthony, Ali Sadeghioon and David Chapman

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure…

Abstract

Purpose

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure monitoring. One of the main challenges for underground WSN deployment is the limited range (less than 3 m) at which reliable wireless underground communication can be achieved using radio signal propagation through the soil. To overcome this challenge, the purpose of this paper is to investigate a new approach for wireless underground communication using acoustic signal propagation along a buried water pipe.

Design/methodology/approach

An acoustic communication system was developed based on the requirements of low cost (tens of pounds at most), low power supply capacity (in the order of 1 W-h) and miniature (centimetre scale) size for a wireless communication node. The developed system was further tested along a buried steel pipe in poorly graded SAND and a buried medium density polyethylene (MDPE) pipe in well graded SAND.

Findings

With predicted acoustic attenuation of 1.3 dB/m and 2.1 dB/m along the buried steel and MDPE pipes, respectively, reliable acoustic communication is possible up to 17 m for the buried steel pipe and 11 m for the buried MDPE pipe.

Research limitations/implications

Although an important first step, more research is needed to validate the acoustic communication system along a wider water distribution pipe network.

Originality/value

This paper shows the possibility of achieving reliable wireless underground communication along a buried water pipe (especially non-metallic material ones) using low-frequency acoustic propagation along the pipe wall.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

18

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 January 2024

Yuanzhang Yang, Linqin Wang, Shengxiang Gao, Zhengtao Yu and Ling Dong

This paper aims to disentangle Chinese-English-rich resources linguistic and speaker timbre features, achieving cross-lingual speaker transfer for Cambodian.

Abstract

Purpose

This paper aims to disentangle Chinese-English-rich resources linguistic and speaker timbre features, achieving cross-lingual speaker transfer for Cambodian.

Design/methodology/approach

This study introduces a novel approach: the construction of a cross-lingual feature disentangler coupled with the integration of time-frequency attention adaptive normalization to proficiently convert Cambodian speaker timbre into Chinese-English without altering the underlying Cambodian speech content.

Findings

Considering the limited availability of multi-speaker corpora in Cambodia, conventional methods have demonstrated subpar performance in Cambodian speaker voice transfer.

Originality/value

The originality of this study lies in the effectiveness of the disentanglement process and precise control over speaker timbre feature transfer.

Details

International Journal of Web Information Systems, vol. 20 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 41