Search results

1 – 10 of 25
Article
Publication date: 10 November 2014

Suresh Bhise, A. Kaur, Preeti Ahluwali and S. S. Thind

The purpose of the present study was to plan with the objectives to optimize and find out the best level of texturized protein from sunflower, soybean and flaxseed on the basis of…

Abstract

Purpose

The purpose of the present study was to plan with the objectives to optimize and find out the best level of texturized protein from sunflower, soybean and flaxseed on the basis of quality and overall acceptability of the cookies.

Design/methodology/approach

Defatted meal from sunflower, soybean and flaxseed was texturized using extruder. Texturized defatted meal of sunflower, soybean and flaxseed was blended at 10, 20, 30 and 40 per cent levels with wheat flour for making cookies using standard procedure.

Findings

Functional properties such as water absorption index, foaming capacity and protein digestibility were increased, while water solubility index and fat absorption capacity decreased with increased levels of texturized defatted meal in wheat flour. Spread ratio, sensory, colour and overall acceptability of cookies were negatively affected when level of texturized flour increased as compared with the control. The force required for breaking cookies decreased with increased level of texturized defatted meal of sunflower, soybean and flaxseed incorporation. Cookies with 10 per cent texturized sunflower, soybean and flaxseed flour received the highest sensory scores. The result showed that texturized defatted meals serve as good substitute to wheat flour with increased protein content in cookies production and utilization.

Originality/value

The study demonstrated that deoiled cake, a byproduct obtained from sunflower, soybean and flaxseed oil industry, offers great potential for supplementation of proteins in food products.

Details

Nutrition & Food Science, vol. 44 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 5 January 2015

Edyta Wrobel, Piotr Kowalik and Janusz Mazurkiewicz

This paper aims to present the possibility of the technology of chemical metallization for the production of contact of photovoltaic cells. The developed technology allows you to…

Abstract

Purpose

This paper aims to present the possibility of the technology of chemical metallization for the production of contact of photovoltaic cells. The developed technology allows you to perform low-cost contacts in any form.

Design/methodology/approach

The study used a multi- and monocrystalline silicon plates. On the surface of the plates, the contact by the electroless metallization was made. After metallization stage, annealing process in a temperature range of 100-700°C was conducted to obtain ohmic contact in a semiconductor material. Subsequently, the electrical parameters of obtained structures were measured. Therefore, trial soldering was made, which demonstrated that the layer is fully soldered.

Findings

Optimal parameters of the metallization bath was specified. The equations RS = f (metallization time), RS = f (temperature of annealing) and C-V characteristics were determined. As a result of conducted research, it has been stated that the most appropriate way leading to the production of soldered metal layers with good adhesion to the portion of selectively activated silicon plate is technology presented below in the following steps: masking, selective activation and nickel-plating of activated plate. Such obtained metal layers have great variety in application and, in particular, can be used for the preparation of electric terminals in silicon solar cell.

Originality/value

The paper presents a new, unpublished method of manufacturing contacts in the structure of the photovoltaic cell.

Details

Microelectronics International, vol. 32 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 June 2013

Marco Capasso and Andrea Morrison

The recent transformations brought about by the globalisation of markets have increased the competitive pressure for firms operating in traditional sectors, and in particular for…

1062

Abstract

Purpose

The recent transformations brought about by the globalisation of markets have increased the competitive pressure for firms operating in traditional sectors, and in particular for those in industrial districts. The authors' aim is to understand the extent to which firms responded to these new challenges. More particularly, they investigate the determinants of innovation at firm level focusing on the role of firm's outsourcing strategies.

Design/methodology/approach

Drawing on an original firm‐level dataset, the authors analyse the determinants of innovation in a typical Italian industrial district, i.e. the hosiery district of Castel Goffredo in the Third Italy. They apply econometric techniques, in particular OLS and Tobit models.

Findings

The authors' findings suggest that industrial districts are evolving towards a differentiated organisational structure in which innovation is driven by firms, which are focused on core competences and high valued added activities.

Research limitations/implications

The authors' results should be interpreted with some caution, since the cross‐sectional design of their data does not allow them to fully control for potential reverse causation effects, which might be relevant for some of the explanatory variables. Their data do not allow them to include additional instrumental variables, thus they cannot control for endogeneity. Therefore, their interpretation is limited to comment the extent and regularity of the relation between dependent and explanatory variables.

Practical implications

The evidence presented in this study corroborates some arguments highlighted in the current debate about the evolution of industrial districts. A network‐based organisation is the dominant organisational structure. The authors have some evidence on the importance of size as driver of innovation.

Originality/value

The authors find original evidence at firm level on the relation between organisational change, in the form of outsourcing, and innovation in the context of an industrial district. They also find empirical support to arguments debated in the recent policy debates on whether small firms can be regarded as engines of innovation in industrial districts.

Details

Management Decision, vol. 51 no. 6
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 8 May 2018

Juliana Sampaio Álvares, Dayana Bastos Costa and Roseneia Rodrigues Santos de Melo

The purpose of this paper is to present an exploratory study which aims to assess the potential use of 3D mapping of buildings and construction sites using unmanned aerial system…

670

Abstract

Purpose

The purpose of this paper is to present an exploratory study which aims to assess the potential use of 3D mapping of buildings and construction sites using unmanned aerial system (UAS) imagery for supporting the construction management tasks.

Design/methodology/approach

The case studies were performed in two different residential construction projects. The equipment used was a quadcopter equipped with digital camera and GPS that allow for the registry of geo-referenced images. The Pix4D Mapper and PhotoScan software were used to generate the 3D models. The study sought to examine three main constructs related to the 3D mapping developed: the easiness of development, the quality of the models in accordance with the proposed use and the usefulness and limitations of the mapping for construction management purposes.

Findings

The main contributions of this study include a better understanding of the development process of 3D mapping from UAS imagery, the potential uses of this mapping for construction management and the identification of barriers and benefits related to the application of these emerging technologies for the construction industry.

Originality/value

The importance of the study is related to the initiative to identify and evaluate the potential use of 3D mapping from UAS imagery, which can provide a 3D view of the construction site from different perspectives, for construction management tasks applications, trying to bring positive contributions to this knowledge area.

Details

Construction Innovation, vol. 18 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 6 September 2011

Ting‐Jin Lim, Azhar‐Mat Easa, Abdul‐Alias Karim, Rajeev Bhat and Min‐Tze Liong

The aim of this study is to develop a soy‐based cream cheese (SCC) with textural characteristics comparable to that of commercial dairy cream cheese (DCC) via the addition of…

1456

Abstract

Purpose

The aim of this study is to develop a soy‐based cream cheese (SCC) with textural characteristics comparable to that of commercial dairy cream cheese (DCC) via the addition of microbial transglutaminase (MTG), soy protein isolate (SPI) and maltodextrin (MD).

Design/methodology/approach

Response surface methodology (RSM) was employed in this study to determine the effects of MTG, MD and SPI on firmness of SCC.

Findings

The second‐order model generated via RSM was significant with only a 9.76 per cent variation not explained by the model. The coefficient of regression revealed that MTG, MD and SPI showed significant linear effects (P<0.0001) on the firmness of SCC, while MTG and SPI showed significant quadratic effects. The model successfully predicted and developed a SCC model with similar firmness as that of DCC; via the combination of 2.57 per cent (w/w) of MTG, 19.69 per cent (w/w) of SPI and 19.69 per cent (w/w) of MD. Physicochemical analyses revealed that SCC possessed lower fat content, reduced saturated fatty acid and zero trans fat. Further rheological measurements revealed that SCC was more solid‐like at room temperature, but less elastic at refrigerated temperature compared to DCC. SEM and SDS‐PAGE analyses affirmed that the textural changes of SCC were attributed to MTG‐induced cross‐linking.

Originality/value

The research demonstrated that a non‐dairy cream cheese could be developed using soy. In addition, the SCC also contained better nutritional properties compared to its dairy counterpart.

Article
Publication date: 1 August 2016

Kazimierz Drabczyk, Edyta Wróbel, Grazyna Kulesza-Matlak, Wojciech Filipowski, Krzysztof Waczynski and Marek Lipinski

The purpose of this study is comparison of the diffusion processes performed using the commercial available dopant paste made by Filmtronics and the original prepared liquid…

Abstract

Purpose

The purpose of this study is comparison of the diffusion processes performed using the commercial available dopant paste made by Filmtronics and the original prepared liquid dopant solution. To decrease prices of industrially produced silicon-based solar cells, the new low-cost production processes are necessary. The main components of most popular silicon solar cells are with diffused emitter layer, passivation, anti-reflective layers and metal electrodes. This type of cells is prepared usually using phosphorus oxychloride diffusion source and metal pastes for screen printing. The diffusion process in diffusion furnace with quartz tube is slow, complicated and requires expensive equipment. The alternative for this technology is very fast in-line processing using the belt furnaces as an equipment. This approach requires different dopant sources.

Design/methodology/approach

In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution. The investigation was focused on dopant sources fabrication and diffusion processes. The doping solution was made in two stages. In the first stage, a base solution (without dopants) was made: dropwise deionized (DI) water and ethyl alcohol were added to a solution consisting of tetraethoxysilane (TEOS) and 99.8 per cent ethyl alcohol. Next, to the base solution, orthophosphoric acid dissolved in ethyl alcohol was added.

Findings

Diffused emitter layers with sheet resistance around 60 Ω/sq were produced on solar grade monocrystalline silicon wafers using two types of dopant sources.

Originality/value

In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 1 August 2006

233

Abstract

Details

Rapid Prototyping Journal, vol. 12 no. 4
Type: Research Article
ISSN: 1355-2546

Article
Publication date: 4 January 2016

Piotr Kowalik, Edyta Wrobel and Janusz Mazurkiewicz

This paper aims to present the results of measurements of the photovoltaic structures made by electroless selective metallization technology. The developed technology provides…

Abstract

Purpose

This paper aims to present the results of measurements of the photovoltaic structures made by electroless selective metallization technology. The developed technology provides low-cost contacts in any form, and parameters of photovoltaic cells made in this technology provide reliable results, comparable with those usually used.

Design/methodology/approach

In this paper, photovoltaic cells with contacts based on Nip and NiCuP alloy were performed. As a substrate, mono- and multicristaline silicon was used. After photovoltaic cells have been prepared, sheet resistance of the contact layers and electrical parameters were measured. Composition and structure of contact layers were also measured.

Findings

Obtained results of sheet resistance and contact layers are repeatable and comparable with previously published results. Electrical parameters of the photovoltaic cells made are comparable with used substrate and technologies. The authors have also noticed that the costs of the electroless metallization which is used to make contact layers is lower than metallization made by thick film or vacuum deposition technologies.

Originality/value

The paper presents new, unpublished results of electrical parameters of photovoltaic cells with contact layers made by electroless metallization. The original idea is the usage of metallization in an acidic solution (pH = 2). In this proposed technology, photovoltaic cells on mono- and multicrystalline silicon plates were performed.

Details

Microelectronics International, vol. 33 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 11 May 2010

Asmiet Ramizy, Wisam J. Aziz, Z. Hassan, Khalid Omar and K. Ibrahim

The purpose of this paper is to describe how fabricate solar cell based‐on porous silicon (PS) prepared by electrochemical etching process is fabricated and the effect of porosity…

2435

Abstract

Purpose

The purpose of this paper is to describe how fabricate solar cell based‐on porous silicon (PS) prepared by electrochemical etching process is fabricated and the effect of porosity layer on the solar cell performance is investigated.

Design/methodology/approach

The techniques used include SiO2 thermal oxidation, ZnO/TiO2 sputtering deposition and PS prepared by electrochemical etching. Surface morphology and structural properties of porous Si were characterized by using scanning electron microscopy. Photoluminescence and Raman spectroscopy measurements were also performed at room temperature. Current‐voltage measurements of the fabricated solar cell were taken under 80 mW/cm2 illumination conditions. Optical reflectance was obtained by using optical reflectometer (Filmetrics‐F20).

Findings

Pore diameter and microstructure are dependent on anodization condition such as HF: ethanol concentration, duration time, temperature, and current density. On other hand, a much more homogeneous and uniform distribution of pores is obtained when compared with other wafer prepared with different electrolyte composition.

Originality/value

PS is found to be an excellent anti‐reflection coating against incident light when it is compared with another anti‐reflection coating and exhibits good light‐trapping of a wide wavelength spectrum which produce high efficiency solar cells (11.23 per cent).

Details

Microelectronics International, vol. 27 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 28 January 2014

Kazimierz Drabczyk, Robert Socha, Piotr Panek and Grzegorz Mordarski

– The paper aims to show application of the electrochemically deposited coatings for thickening of the screen printed electric paths potentially applied in photovoltaic cells.

Abstract

Purpose

The paper aims to show application of the electrochemically deposited coatings for thickening of the screen printed electric paths potentially applied in photovoltaic cells.

Design/methodology/approach

The electric paths were screen printed with the use of silver-based paste. The paths were thickened by electrodeposition of thin copper layer in potentiostatic regime from surfactant-free plating bath. The morphology and surface quality of the paths were studied by imaging with scanning electron microscopy.

Findings

The electric paths can be thickened successfully, but quality for the screen printed substrate determines quality of deposited layer. The EDX analysis confirmed that the deposited copper layer covered uniformly the printed paths.

Research limitations/implications

The adhesion of the copper-covered path to the silicon wafer surface depends on adhesion of the original screen printed path.

Originality/value

This paper confirms that electrodeposited copper can be applied for screen printed silver paths thickening in a controllable way.

Details

Soldering & Surface Mount Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 25