Search results

1 – 10 of 560
Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2707

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1495

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 15 July 2022

Wiah Wardiningsih, Sandra Efendi, Rr. Wiwiek Mulyani, Totong Totong, Ryan Rudy and Samuel Pradana

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Abstract

Purpose

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Design/methodology/approach

The fiber was extracted using the biological retting process (cold-water retting). The intrinsic fiber properties obtained were used to evaluate the possibility of using fiber for textile applications.

Findings

The average length of a curcuma zedoaria fiber was 34.77 cm with a fineness value of 6.72 Tex. A bundle of curcuma zedoaria fibers was comprised of many elementary fibers. Curcuma zedoaria had an irregular cross-section, with the lumen having a varied oval shape. Curcuma zedoaria fibers had tenacity and elongation value of 3.32 gf/denier and 6.95%, respectively. Curcuma zedoaria fibers had a coefficient of friction value of 0.46. Curcuma zedoaria fibers belong to a hygroscopic fiber type with a moisture regain value of 10.29%.

Originality/value

Extraction and Characterization of Curcuma zedoaria Pseudo-stems Fibers for Textile Application.

Article
Publication date: 28 March 2022

Adriana Gorea, Amy Dorie and Martha L. Hall

This study aims to investigate if engineered compression variations using moisture-responsive knitted fabric design can improve breast support in seamless knitted sports bras.

Abstract

Purpose

This study aims to investigate if engineered compression variations using moisture-responsive knitted fabric design can improve breast support in seamless knitted sports bras.

Design/methodology/approach

An experimental approach was used to integrate a novel moisture-responsive fabric panel into a seamless knitted bra, and the resulting compression variability in dry versus wet conditions were compared with those of a control bra. Air permeability and elongation testing of between breasts fabric panels was conducted in dry and wet conditions, followed by three-dimensional body scanning of eight human participants wearing the two bras in similar conditions. Questionnaires were used to evaluate perceived comfort and breast support of both bras in both conditions.

Findings

Air permeability test results showed that the novel panel had the highest variance between dry and wet conditions, confirming its moisture-responsive design, and increased its elongation coefficient in both wale and course directions in wet condition. There were significant main effects of bra type and body location on breast compression measurements. Breast circumferences in the novel bra were significantly larger than in the control bra condition. The significant two-way interaction between bra type and moisture condition showed that the control bra lost compressive power in wet condition, whereas the novel bra became more compressive when wet. Changes in compression were confirmed by participants’ perception of tighter straps and drier breast comfort.

Originality/value

These findings add to the limited scientific knowledge of moisture adaptive bra design using engineered knitted fabrics via advanced manufacturing technologies, with possible applications beyond sports bras, such as bras for breast surgery recovering patients.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 February 2024

Osman Seray Özkan, Burcu Üzüm and Yasemin Gülbahar

The aim of this research, which is based on social identity theory (SIT), is to investigate the effect of leader vision (LV) and crab syndrome (CS) on creativity. The impact of LV…

Abstract

Purpose

The aim of this research, which is based on social identity theory (SIT), is to investigate the effect of leader vision (LV) and crab syndrome (CS) on creativity. The impact of LV and CS, as well as psychological ownership (PO), on creativity is examined. It is also to determine the mediating role of PO and the moderating role of instrumental climate (IC) in these relationships.

Design/methodology/approach

The research was carried out with the quantitative research method by adopting the screening design. Deductive logic approach was used to develop hypotheses and theoretical framework. The textile sector, where the emphasis on creativity is at the forefront, was chosen as an example. Data without common method variance (CMV) error were analyzed by structural equation modeling (SEM).

Findings

The results of the research show that LV is positively related to creativity, while CS is negatively related to creativity. Additionally, a positive correlation has been identified between PO and creativity. It has been revealed that PO has a mediation role in the relationship between the LV and creativity, and the relationship between the CS and creativity. It has been also determined that IC has a moderator role between the LV and PO.

Originality/value

This study introduces a novel perspective on creativity through the integration of the LV and CS concepts. Furthermore, it contributes significantly to the existing creativity literature by examining the impact of PO on creativity and the mediating role of PO.

Details

Journal of Management Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0262-1711

Keywords

Article
Publication date: 7 November 2023

Metin Sabuncu and Hakan Özdemir

This study aims to identify leather type and authenticity through optical coherence tomography.

Abstract

Purpose

This study aims to identify leather type and authenticity through optical coherence tomography.

Design/methodology/approach

Optical coherence tomography images taken from genuine and faux leather samples were used to create an image dataset, and automated machine learning algorithms were also used to distinguish leather types.

Findings

The optical coherence tomography scan results in a different image based on leather type. This information was used to determine the leather type correctly by optical coherence tomography and automatic machine learning algorithms. Please note that this system also recognized whether the leather was genuine or synthetic. Hence, this demonstrates that optical coherence tomography and automatic machine learning can be used to distinguish leather type and determine whether it is genuine.

Originality/value

For the first time to the best of the authors' knowledge, spectral-domain optical coherence tomography and automated machine learning algorithms were applied to identify leather authenticity in a noncontact and non-invasive manner. Since this model runs online, it can readily be employed in automated quality monitoring systems in the leather industry. With recent technological progress, optical coherence tomography combined with automated machine learning algorithms will be used more frequently in automatic authentication and identification systems.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 May 2022

Dat Van Truong, Song Thanh Quynh Le and Huong Mai Bui

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to…

Abstract

Purpose

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to demonstrate the process of creating an oil-absorbent web from a blend of treated kapok and polypropylene fibers.

Design/methodology/approach

Kapok fibers were separated from dried fruits, then the wax was removed with an HCl solution at different concentrations. The morphological and structural changes of these fibers were investigated using scanning electron microscopy images. The blending ratios of kapok and polypropylene fibers were 60/40, 70/30 and 80/20, respectively. The fiber blends were fed to a laboratory carding machine to form a web and then consolidated using the heat press technique. The absorption behavior of the formed web was evaluated regarding oil absorption capacity and oil retention capacity according to ASTM 726.

Findings

The results showed that the HCl concentration of 1.0% (wt%) gave the highest wax removal efficiency without damaging the kapok fibers. This study found that oil absorbency is influenced by the fiber blending ratio, web tensile strength and elongation, porosity, oil type and environmental conditions. The oil-absorbency of the web can be re-used for at least 20 cycles.

Research limitations/implications

This study only looked at three types of oils: diesel, kerosene and vegetable oils.

Practical implications

When the problem of oil spills in rivers and seas is growing and causing serious environmental and economic consequences, using physical methods to recover oil spills is the most effective solution.

Originality/value

This research adds to the possibility of using kapok fiber in the form of a web of non-woven fabric for practical purposes.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 22 August 2023

Syed Imran Zaman and Simonov Kusi-Sarpong

The purpose of this study is to find out what is the relationship between sustainability toward consumer behavior. Consumer behavior is the method of choosing, buying and using…

Abstract

Purpose

The purpose of this study is to find out what is the relationship between sustainability toward consumer behavior. Consumer behavior is the method of choosing, buying and using goods and services with an attachment to needs and wants. Now consumers are aware about sustainability, they make purchase decisions according to environmental safety, benefit to the society and increase economic growth.

Design/methodology/approach

This study validates the result through experts in textile industry by using the Decision-Making Trial and Evaluation Laboratory approach. This method has many benefits which provide decision makers and experts to understand the interdependence and influential relation between the criteria by hierarchical approach.

Findings

According to the results, green culture (F8) and green brand (F3) are the most influential (causal) factors and exert a substantial amount of influence over other factors for achieving organizational performance and sustainability. On the other hand, past experience (F14) and time pressure (F12) are the most influenced (effect) factors that are highly influenced by other factors.

Practical implications

The study conducted in Pakistan underscores the significance of maintaining a healthy and pristine environment for future generations. Both consumers and organizations play a vital role in this endeavor. It is imperative that they actively promote and support goods and services that advocate for sustainability.

Social implications

Mangers should use long-term strategies that meet the high product value to enhance the organization’s reputation, so it will have positive consumer perception. If managers make policies to implement natural resources in their raw material, so this policy avoids conflicts and maintains a balance in our society.

Originality/value

This research delves into the complexities and subtleties associated with the identification and examination of the interconnections between the success factors of sustainability and consumer behavior.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 560