Search results

1 – 10 of over 3000
Article
Publication date: 1 July 2006

Sabria Gribaa, Sami Ben Amar and Abdelwaheb Dogui

The aim of this work is to check the influence of some sewing parameters upon the tensile behaviour of a textile assembly (assembly of two woven samples by a seam).

1056

Abstract

Purpose

The aim of this work is to check the influence of some sewing parameters upon the tensile behaviour of a textile assembly (assembly of two woven samples by a seam).

Design/methodology/approach

This analysis was carried out according to the approach “experimental design”. The studied parameters are the sewing thread, the stitch type, the stitch density, the needle size and the edge of seam. The targeted answers are drawn from the tensile test on the assembly: breaking strength, breaking elongation and deformation energy.

Findings

In order to highlight the behaviour of the seam, a load‐extension curve for the stitch line is established: it represents, for a value of a given tensile effort, the difference between the displacement of the assembly and that of the fabric. From this curve, breaking elongation as well as the deformation energy are determined.

Originality/value

An “experimental design” was carried out and analysed for two types of assembly (warp and weft). Linear models predicting each response were established.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 September 2015

Rafal Hrynyk and Iwona Frydrych

– The purpose of this paper is to check an applicability of aluminized basalt fabrics for production of gloves protecting simultaneously against thermal and mechanical factors.

Abstract

Purpose

The purpose of this paper is to check an applicability of aluminized basalt fabrics for production of gloves protecting simultaneously against thermal and mechanical factors.

Design/methodology/approach

Six variants of protective gloves were manufactured using two different glove constructions: more simple and cheaper with the anatomical thumb arrangement (model A), and more ergonomic one with so called “distance gussets” (model B). Aluminized basalt fabrics were contained in the back side of all variants and in only one variant of palm side. Then the protective properties against thermal and mechanical factors were measured according to the up-to-date standards.

Findings

The fulfillment of contact heat requirement was achieved for all glove variants at 100°C. Application of aluminized basalt fabrics in the glove back side allowed obtaining the fourth performance level in the case of resistance to small metal splashes and assuring the highest protection against the radiant heat and small metal splashes. Fulfillment of standard requirements for all examined mechanical parameters was achieved and significantly higher values than reqired for the highest performance level were registered.

Research limitations/implications

The further research including upscalling strategy as well as industrial conditions requirements should be taking into account for basalt textiles development. Moreover functionalization of basalt yarns and fabrics seems to be promising feature.

Practical implications

The preliminary utility trials were done and registered results are very promising, shows that this kind of gloves will be cheaper than produced so far and could be used in the glass, welder companies.

Social implications

The basalt textiles applied for protective gloves or other personal protective equipment can ensure safety at work for end users operating in mechanical and thermal risk scenarios.

Originality/value

Up till now the basalt fabrics have not been recognized as a material for the personal protective equipment, they were used mostly for technical purposes.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 2005

S. Rajakumar, V.P. Arunachalam and V. Selladurai

To provide a new model to solve the assembly‐planning problem of a textile machine in a shopfloor which can help researchers and practitioners.

2743

Abstract

Purpose

To provide a new model to solve the assembly‐planning problem of a textile machine in a shopfloor which can help researchers and practitioners.

Design/methodology/approach

The assembly planning of a textile machine (repetitive manufacturing system) involves the allocation of operations to cross‐trained operators. Workflow is defined as the workloads assigned to the operators. Operators with smaller workloads are selected to be assigned new operations from the list of unscheduled operations. Three different scheduling strategies – random, shortest processing time, and longest processing time – are adopted for the selection of operations to be assigned to operators. Different combinations of these strategies are considered for the selection of both preceding and succeeding operations. A computer simulation program has been coded on an IBM/PC‐compatible system in the C++ language to study the performance of real data from the shopfloor.

Findings

The relative percentage of imbalance is adopted for evaluating the performance of these heuristics. The RL, SL and LL produced well balanced workload schedules with lesser RPI values for all operators other than heuristics.

Research limitations/implications

Non‐traditional approaches like genetic algorithms can be applied to determine the robustness of the results obtained by this research.

Practical implications

The experiments on simulated and real data clearly indicate that the order of succeeding operations determines the balanced workflows to the assembly of operations among the operators.

Originality/value

The allocation of assembly operations to the operators is modeled into a parallel machine‐scheduling problem with precedence constraints using the objective of minimizing the workflow among the operators.

Details

Journal of Manufacturing Technology Management, vol. 16 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 1 June 2003

Claudia Herzberg, Sybille Krzywinski and Hartmut Rödel

Complex material requirements for high‐technology applications increasingly demand the use of hybrid material structures with properties tailored to the lines of loading. Textile

Abstract

Complex material requirements for high‐technology applications increasingly demand the use of hybrid material structures with properties tailored to the lines of loading. Textile‐reinforced multilayer composite structures are particularly suitable for the production of component structures in an optimised lightweight construction. In the loading case, however, delaminating phenomena occur between the individual layers due to the low interlaminar shear strength. The appropriate techniques and machines of the ready‐made‐clothing technology allow the specific sewing‐up of the semifinished textile products into a three‐dimensionally reinforced multilayer composite structure; the setting of a load‐adapted and failure‐tolerant characteristic of properties being possible in the z‐direction through a versatile variation of sewing parameters. Moreover, the sewing technology makes possible a ready‐made‐clothing‐technological preassembly of components of semi‐finished products, and thus can perform position‐fixing functions in the consolidation of the composites. The ready‐made‐clothing process is divided into sub‐processes like product development, preparation of cutting, cutting, connecting and forming as well as packaging and shipping. The technical procedures and machines applied are chosen from economic aspects. Besides the large number of pieces, extreme thickness of the textile products of up to 20 mm and the required sewing precision demand precise and reproducible manufacturing processes.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 February 2008

Damjana Celcar, Harriet Meinander and Jelka Geršak

The purpose of this study was to investigate the heat and moisture transmission through different types of textile materials or material combinations used for male business…

1282

Abstract

Purpose

The purpose of this study was to investigate the heat and moisture transmission through different types of textile materials or material combinations used for male business clothing.

Design/methodology/approach

In this study, eight different material combinations, which simulate four‐layer male business clothing system were tested using the sweating cylinder under two environmental conditions (10°C/65% RH and 25°C/65% RH), and at two sweating levels (100 and 200 gm−2h−1), in order to evaluate the heat and moisture transmission properties of material combinations.

Findings

The results show how combinations of clothing materials that simulate male business clothing system influence on the dry and evaporative heat loss between the cylinder surface and two different environment conditions as well as to different sweating levels.

Practical implications

The sweating cylinder can be used for measuring the heat and moisture transmission through clothing materials or material combinations in order to find out the best combination of textile materials, which simulate clothing system. Measured thermal comfort properties of material combinations evaluated with a sweating cylinder can provide valuable information for the textile and clothing industry by manufacturing/designing new textiles and clothing systems.

Originality/value

The paper investigated the heat and moisture transmission through combinations of clothing materials that simulate male business clothing system. In the past few years, clothing materials containing microencapsulated phase‐change materials (PCMs) have appeared in outdoor garments, particularly sportswear; therefore, we decided to investigate the combinations of standard used textile materials as well as of materials, containing PCMs, which simulate male business clothing system.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 June 2013

Ruey‐Hor Yen, Chien‐Yu Chen, Ching‐Tang Huang and Pei‐Jing Chen

This work seeks to analyze the heat transfer phenomena of anisotropic thermal conductivity fabrics containing electric conductive yarns.

Abstract

Purpose

This work seeks to analyze the heat transfer phenomena of anisotropic thermal conductivity fabrics containing electric conductive yarns.

Design/methodology/approach

A numerical program, based on a spectral element method, is used to assess the heating fabric with a temperature control model. The study determines suitable parameters for the fabric by evaluating the temperature uniformity on the fabric surface. Effective thermal conductivities of the fabric are obtained by comparing the experimental and numerical results with each other, using a nonlinear least‐square fitting method.

Findings

The results indicate that employing high effective thermal conductivity of non‐electric conductive yarns in a direction perpendicular to electric conductive yarns helps to increase temperature uniformity. However, the effect of the high effective thermal conductivity of electric conductive yarns is not evident. Adopting a short distance between the electric conductive yarns and a thick fabric is also beneficial in increasing temperature uniformity. If the heating fabric is applied in a place where there is easy energy transfer between the surface of the fabric and moving air, collocation with high heating power is needed to maintain the temperature. Choosing an appropriate heating source is essential when considering temperature uniformity and energy savings using a temperature controller.

Originality/value

The findings will be useful in the design of heating fabrics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2010

Yuchai Sun, Xiaogang Chen, Zhonghao Cheng and Xunwei Feng

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable…

Abstract

Purpose

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable of dealing with conductive, convective and radioactive heat transfer.

Design/methodology/approach

Quantificational results were given out by the aid of finite element (FE) analysis software MSC MARC Mentat.

Findings

Significant findings through this paper include the change in heat flux against time and the transit temperature distribution at the cross‐section of the fabric assembly. The size of the air gaps has a significant influence on the heat transfer. The balance heat flux drops by 40 per cent when the air gap increases from 2 to 10 mm. The influence of the air gap tends to become smaller as the air gap is further increased. The number of fabric layers in the textile assembly has a noted influence, more so when the ambient temperature is lower. Comparisons between the theoretical and tested results show a good agreement.

Originality/value

This paper has established a new method for clothing comfort study by making use of a general purpose FE method software package.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 November 2019

Virginija Daukantienė and Gerda Mikalauskaitė

The purpose of this paper is to evaluate the influence of assembly type on the hand property of the polyester-knitted materials containing different amounts of elastane fibre.

Abstract

Purpose

The purpose of this paper is to evaluate the influence of assembly type on the hand property of the polyester-knitted materials containing different amounts of elastane fibre.

Design/methodology/approach

The hand property of control textile materials specimens as well as assembled ones applying both adhesive bonding and sewing was evaluated analysing the typical pulling curves as well as the individual hand parameters, which were determined using the device KTU-Griff-Tester. The complex hand criterion Q was calculated for the complete assessment of both textiles and their assemblies’ hand by one numeral value.

Findings

It was shown that the fabric structure and assembly type have a significant influence on the knitted materials hand property. The complex hand criterion Q varied from 0.068 to 0.186, depending on the material structure, and it was decreased up to 42.6 per cent due to textile assemblies.

Practical implications

The determined research results are significant not only for clothing science but also leads to the improvement in clothing quality in fashion industry suggesting more ergonomic and original constructional decisions for clothes’ design, selection of most suitable assembly type and its place in overall garment area, which is very important for the development process of the slim fitted sportswear featuring with a very complicated construction, usually worn under intensive body movements causing rubbing effect to the skin.

Originality/value

Knitted fabrics should not only be elastic but also have perfect hand, thus making them to feel comfortable. But hand property of assembled textiles had not been investigated previously. Novelty and originality of this research was the objective and simple evaluation of the hand property for both knitted materials and their assemblies taking into account the overall skin sensorial comfort of a garment.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 May 2008

R.V. Mahendra Gowda and S. Mohanraj

Textile technologists have already recognized the role of fibre friction in various textile processes. Attempts have been made to develop a novel instrument system to quantify…

Abstract

Textile technologists have already recognized the role of fibre friction in various textile processes. Attempts have been made to develop a novel instrument system to quantify fibre friction and relate it with fibre processing, yarn quality and ultimately, the fabric handle. In this context, the current paper presents research work carried out in designing and developing a novel system to measure friction in various textile fibre assemblies. The paper discusses the novel features of the Computer Aided Friction Tester, designed and developed exclusively for characterising friction in fibres, sheets of yarn, fabrics, nonwovens, polymeric films, composites and other technical textiles. It also provides the highlights of frictional characteristics measured in various textile fibre assemblies and the reasons for their occurrences.

Details

Research Journal of Textile and Apparel, vol. 12 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 April 2015

Simon Annaheim, Li-chu Wang, Agnieszka Psikuta, Matthew Patrick Morrissey, Martin Alois Camenzind and René Michel Rossi

The purpose of this paper is to determine the validity and inter-/intra-laboratory repeatability of the first part of a novel, three-phase experimental procedure using a sweating…

Abstract

Purpose

The purpose of this paper is to determine the validity and inter-/intra-laboratory repeatability of the first part of a novel, three-phase experimental procedure using a sweating Torso device.

Design/methodology/approach

Results from a method comparison study (comparison with the industry-standard sweating guarded hotplate method) and an inter-laboratory comparison study are presented.

Findings

A high correlation was observed for thermal resistance in the method comparison study (r=0.97, p<0.01) as well as in the inter-laboratory comparison study (r=0.99, p<0.01).

Research limitations/implications

The authors conclude that the first phase of the standardised procedure for the sweating Torso provides reliable data for the determination of the dry thermal resistance of single and multi-layer textiles, and is therefore suitable as standard method to be used by different laboratories with this type of device. Further work is required to validate the applicability of the method for textiles with high thermal resistance.

Originality/value

This study provides the first “round-robin” data for measuring thermal resistance using a Torso device. In future publications the authors will provide similar data examining the repeatability of measurements that quantify combined heat and mass transfer.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 3000