Search results

1 – 10 of over 3000
Open Access
Article
Publication date: 11 March 2024

Anna Hallberg, Ulrika Winblad and Mio Fredriksson

The build-up of large-scale COVID-19 testing required an unprecedented effort of coordination within decentralized healthcare systems around the world. The aim of the study was to…

Abstract

Purpose

The build-up of large-scale COVID-19 testing required an unprecedented effort of coordination within decentralized healthcare systems around the world. The aim of the study was to elucidate the challenges of vertical policy coordination between non-political actors at the national and regional levels regarding this policy issue, using Sweden as our case.

Design/methodology/approach

Interviews with key actors at the national and regional levels were analyzed using an adapted version of a conceptualization by Adam et al. (2019), depicting barriers to vertical policy coordination.

Findings

Our results show that the main issues in the Swedish context were related to parallel sovereignty and a vagueness regarding responsibilities and mandates as well as complex governmental structures and that this was exacerbated by the unfamiliarity and uncertainty of the policy issue. We conclude that understanding the interaction between the comprehensiveness and complexity of the policy issue and the institutional context is crucial to achieving effective vertical policy coordination.

Originality/value

Many studies have focused on countries’ overall pandemic responses, but in order to improve the outcome of future pandemics, it is also important to learn from more specific response measures.

Details

Journal of Health Organization and Management, vol. 38 no. 9
Type: Research Article
ISSN: 1477-7266

Keywords

Article
Publication date: 5 April 2024

Xiaohong Shi, Ziyan Wang, Runlu Zhong, Liangliang Ma, Xiangping Chen and Peng Yang

Smart contracts are written in high-level programming languages, compiled into Ethereum Virtual Machine (EVM) bytecode, deployed onto blockchain systems and called with the…

Abstract

Purpose

Smart contracts are written in high-level programming languages, compiled into Ethereum Virtual Machine (EVM) bytecode, deployed onto blockchain systems and called with the corresponding address by transactions. The deployed smart contracts are immutable, even if there are bugs or vulnerabilities. Therefore, it is critical to verify smart contracts before deployment. This paper aims to help developers effectively and efficiently locate potential defects in smart contracts.

Design/methodology/approach

GethReplayer, a smart contract testing method based on transaction replay, is proposed. It constructs a parallel transaction execution environment with two virtual machines to compare the execution results. It uses the real existing transaction data on Ethereum and the source code of the tested smart contacts as inputs, conditionally substitutes the bytecode of the tested smart contract input into the testing EVM, and then monitors the environmental information to check the correctness of the contract.

Findings

Experiments verified that the proposed method is effective in smart contract testing. Virtual environmental information has a significant effect on the success of transaction replay, which is the basis for the performance of the method. The efficiency of error locating was approximately 14 times faster with the proposed method than without. In addition, the proposed method supports gas consumption analysis.

Originality/value

This paper addresses the difficulty that developers encounter in testing smart contracts before deployment and focuses on helping develop smart contracts with as few defects as possible. GethReplayer is expected to be an alternative solution for smart contract testing and provide inspiration for further research.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Case study
Publication date: 24 April 2024

Jared D. Harris, Samuel L. Slover, Bradley R. Agle, George W. Romney, Jenny Mead and Jimmy Scoville

In early 2014, recent Stanford University graduate Tyler Shultz was in a quandary. He had been working at Theranos, a blood-diagnostic company founded by Elizabeth Holmes, a…

Abstract

In early 2014, recent Stanford University graduate Tyler Shultz was in a quandary. He had been working at Theranos, a blood-diagnostic company founded by Elizabeth Holmes, a Stanford-dropout wunderkind, for almost a year. Shultz had learned enough about the company to realize that its practices and the efficacy of its much-touted finger-prick blood-testing technology were questionable and that the company was going to great lengths to hide this fact from the public and from regulators.

Theranos and Holmes were Silicon Valley darlings, enjoying positive press and lavish attention from potential investors and technology titans alike. Just as companies like PayPal had revolutionized the stagnant payments industry and Uber had upended the for-hire transportation sector, Theranos had been positioned as the latest technology firm to substantially disrupt yet another mature sector: the medical laboratory business. By the start of 2014, the company had raised more than $400 million in funding, and had an estimated market valuation of $9 billion.

Shultz's situation was exacerbated by the fact that his grandfather, the highly respected former US Secretary of State George Shultz, was on the Theranos board and was one of Elizabeth Holmes's biggest supporters.

But Tyler Shultz worried about the customers he was convinced were receiving highly unreliable and often inaccurate blood-test results. With so much at stake, Shultz wondered how he should proceed. Should he raise his concerns with the firm's investors? Blow the whistle externally? Report to industry regulators? Go away quietly?

This case and its subsequent four brief follow-up cases are based largely on interviews with Tyler Shultz, and outline the dilemma he faced and the various steps he would take both to extricate himself from his unsavory position and let the public know the full extent of the deception at Theranos.

Five optional handouts are available to instructors to further discussion after the case has been debriefed. The handouts serve as additional decision points for the students if your class time permits.

Book part
Publication date: 5 April 2024

Bruce E. Hansen and Jeffrey S. Racine

Classical unit root tests are known to suffer from potentially crippling size distortions, and a range of procedures have been proposed to attenuate this problem, including the…

Abstract

Classical unit root tests are known to suffer from potentially crippling size distortions, and a range of procedures have been proposed to attenuate this problem, including the use of bootstrap procedures. It is also known that the estimating equation’s functional form can affect the outcome of the test, and various model selection procedures have been proposed to overcome this limitation. In this chapter, the authors adopt a model averaging procedure to deal with model uncertainty at the testing stage. In addition, the authors leverage an automatic model-free dependent bootstrap procedure where the null is imposed by simple differencing (the block length is automatically determined using recent developments for bootstrapping dependent processes). Monte Carlo simulations indicate that this approach exhibits the lowest size distortions among its peers in settings that confound existing approaches, while it has superior power relative to those peers whose size distortions do not preclude their general use. The proposed approach is fully automatic, and there are no nuisance parameters that have to be set by the user, which ought to appeal to practitioners.

Details

Essays in Honor of Subal Kumbhakar
Type: Book
ISBN: 978-1-83797-874-8

Keywords

Article
Publication date: 15 January 2024

Mohammad A Gharaibeh, Markus Feisst and Jürgen Wilde

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Abstract

Purpose

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Design/methodology/approach

The AgSn TLP test samples are manufactured using pre-defined optimized TLP bonding process parameters. Consequently, tensile and creep tests are conducted at various loading temperatures to generate stress–strain and creep data to accurately determine the elastic properties and two sets of Anand model creep coefficients. The resultant tensile- and creep-based constitutive models are subsequently used in extensive finite element simulations to precisely survey the mechanical response of the AgSn TLP bonds in power electronics due to different thermal loads.

Findings

The response of both models is thoroughly addressed in terms of stress–strain relationships, inelastic strain energy densities and equivalent plastic strains. The simulation results revealed that the testing conditions and parameters can significantly influence the values of the fitted Anand coefficients and consequently affect the resultant FEA-computed mechanical response of the TLP bonds. Therefore, this paper suggests that extreme care has to be taken when planning experiments for the estimation of creep parameters of the AgSn TLP joints.

Originality/value

In literature, there is no constitutive modeling data on the AgSn TLP bonds.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 March 2024

Aminuddin Suhaimi, Izni Syahrizal Ibrahim and Mariyana Aida Ab Kadir

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to…

Abstract

Purpose

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design.

Design/methodology/approach

This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards.

Findings

The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams.

Originality/value

The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Book part
Publication date: 5 April 2024

Badi H. Baltagi

This chapter revisits the Hausman (1978) test for panel data. It emphasizes that it is a general specification test and that rejection of the null signals misspecification and is…

Abstract

This chapter revisits the Hausman (1978) test for panel data. It emphasizes that it is a general specification test and that rejection of the null signals misspecification and is not an endorsement of the fixed effects estimator as is done in practice. Non-rejection of the null provides support for the random effects estimator which is efficient under the null. The chapter offers practical tips on what to do in case the null is rejected including checking for endogeneity of the regressors, misspecified dynamics, and applying a nonparametric Hausman test, see Amini, Delgado, Henderson, and Parmeter (2012, chapter 16). Alternatively, for the fixed effects die hard, the chapter suggests testing the fixed effects restrictions before adopting this estimator. The chapter also recommends a pretest estimator that is based on an additional Hausman test based on the difference between the Hausman and Taylor estimator and the fixed effects estimator.

Article
Publication date: 12 April 2024

Lara E. Yousif, Mayyadah S. Abed, Aseel B. Al-Zubidi and Kadhim K. Resan

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other…

Abstract

Purpose

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other countries. With almost 80% of the world’s amputees having below-the-knee amputations, Iraq has become a global leader in the population of amputees. Important components found in lower limb prostheses include the socket, pylon (shank), prosthetic foot and connections.

Design/methodology/approach

There are two types of prosthetic feet: articulated and nonarticulated. The solid ankle cushion heel foot is the nonarticulated foot that is most frequently used. The goal of this study is to use a composite filament to create a revolutionary prosthetic foot that will last longer, have better dorsiflexion and be more stable and comfortable for the user. The current study, in addition to pure polylactic acid (PLA) filament, 3D prints test items using a variety of composite filaments, such as PLA/wood, PLA/carbon fiber and PLA/marble, to accomplish this goal. The experimental step entails mechanical testing of the samples, which includes tensile testing and hardness evaluation, and material characterization by scanning electron microscopy-energy dispersive spectrometer analysis. The study also presents a novel design for the nonarticulated foot that was produced with SOLIDWORKS and put through ANSYS analysis. Three types of feet are produced using PLA, PLA/marble and carbon-covered PLA/marble materials. Furthermore, the manufactured prosthetic foot undergoes testing for dorsiflexion and fatigue.

Findings

The findings reveal that the newly designed prosthetic foot using carbon fiber-covered PLA/marble material surpasses the PLA and PLA/marble foot in terms of performance, cost-effectiveness and weight.

Originality/value

To the best of the author’s knowledge, this is the first study to use composite filaments not previously used, such as PLA/wood, PLA/carbon fiber and PLA/marble, to design and produce a new prosthetic foot with a longer lifespan, improved dorsiflexion, greater stability and enhanced comfort for the patient. Beside the experimental work, a numerical technique specifically the finite element method, is used to assess the mechanical behavior of the newly designed foot structure.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 March 2024

Mauricio Pérez Giraldo, Mauricio Vasquez, Alejandro Toro, Robison Buitrago-Sierra and Juan Felipe Santa

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the…

20

Abstract

Purpose

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the Medellín tram system.

Design/methodology/approach

The gel-type lubricant with graphite and aluminum powder is synthesized. Rheological tests, viscosity measurements and linear viscoelastic regime assessments are conducted. Subsequently, tribological analyses encompassing four-ball and twin disc methods are executed. Finally, real-world testing is performed on the Medellín tram system.

Findings

An achieved lubricant met the stipulated criteria, yielding innovative insights into the interaction of graphite and aluminum powder additives under varying tests.

Originality/value

Novel findings are unveiled regarding the interaction of graphite and aluminum powder additives in tribological, rheological and real-world trials. In addition, the wear behavior of polymers is observed, along with the potential utilization of such additives in tramway systems.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 3000