Search results

1 – 10 of over 42000
Article
Publication date: 25 November 2019

Avinash Kumar Shrivastava and Nitin Sachdeva

Almost everything around us is the output of software-driven machines or working with software. Software firms are working hard to meet the user’s requirements. But developing a…

Abstract

Purpose

Almost everything around us is the output of software-driven machines or working with software. Software firms are working hard to meet the user’s requirements. But developing a fault-free software is not possible. Also due to market competition, firms do not want to delay their software release. But early release software comes with the problem of user reporting more failures during operations due to more number of faults lying in it. To overcome the above situation, software firms these days are releasing software with an adequate amount of testing instead of delaying the release to develop reliable software and releasing software patches post release to make the software more reliable. The paper aims to discuss these issues.

Design/methodology/approach

The authors have developed a generalized framework by assuming that testing continues beyond software release to determine the time to release and stop testing of software. As the testing team is always not skilled, hence, the rate of detection correction of faults during testing may change over time. Also, they may commit an error during software development, hence increasing the number of faults. Therefore, the authors have to consider these two factors as well in our proposed model. Further, the authors have done sensitivity analysis based on the cost-modeling parameters to check and analyze their impact on the software testing and release policy.

Findings

From the proposed model, the authors found that it is better to release early and continue testing in the post-release phase. By using this model, firms can get the benefits of early release, and at the same time, users get the benefit of post-release software reliability assurance.

Originality/value

The authors are proposing a generalized model for software scheduling.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 6/7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 July 2023

Priyanka Gupta, Adarsh Anand, Yoshinobu Tamura and Mangey Ram

The ideology of this article is to study the performance concerns of SDN Controllers, with the help of developed SRGM and thereby obtain its optimal testing duration. The effect…

Abstract

Purpose

The ideology of this article is to study the performance concerns of SDN Controllers, with the help of developed SRGM and thereby obtain its optimal testing duration. The effect of undetected uncertainty in the parameter values have also been catered in the proposal.

Design/methodology/approach

These uncertainties in the parameter values are studied as the risk of not meeting desired set of requirements, whose removal causes additional cost. Considering these two constructs as attributes of MAUT, the controller's optimal testing duration is obtained.

Findings

The article focuses towards obtaining the optimal duration for which the SDN Controllers must be tested. It was observed that the inculcation of risk-attribute has provided the higher utility value as compared to any other existing scenarios.

Originality/value

Plenty of SRGM have been proposed in the literature which talks about the testing stop time determination problems. But, none of them have considered the impact of risk of not meeting the requirements (reliability) along with cost to obtain its testing stop time. Further, validation of the proposed model in presented with the help of two releases versions of SDN controller platform, ONOS, entitled as “Kingfisher” and “Loon” and has acquired promising results.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 18 November 2021

Adarsh Anand, Subhrata Das, Mohini Agarwal and Shinji Inoue

In the current market scenario, software upgrades and updates have proved to be very handy in improving the reliability of the software in its operational phase. Software upgrades…

Abstract

Purpose

In the current market scenario, software upgrades and updates have proved to be very handy in improving the reliability of the software in its operational phase. Software upgrades help in reinventing working software through major changes, like functionality addition, feature enhancement, structural changes, etc. In software updates, minor changes are undertaken which help in improving software performance by fixing bugs and security issues in the current version of the software. Through the current proposal, the authors wish to highlight the economic benefits of the combined use of upgrade and update service. A cost analysis model has been proposed for the same.

Design/methodology/approach

The article discusses a cost analysis model highlighting the distinction between launch time and time to end the testing process. The number of bugs which have to be catered in each release has been determined which also consists of the count of latent bugs of previous version. Convolution theory has been utilized to incorporate the joint role of tester and user in bug detection into the model. The cost incurred in debugging process was determined. An optimization model was designed which considers the reliability and budget constraints while minimizing the total debugging cost. This optimization was used to determine the release time and testing stop time.

Findings

The proposal is backed by real-life software bug dataset consisting of four releases. The model was able to successfully determine the ideal software release time and the testing stop time. An increased profit is generated by releasing the software earlier and continues testing long after its release.

Originality/value

The work contributes positively to the field by providing an effective optimization model, which was able to determine the economic benefit of the combined use of upgrade and update service. The model can be used by management to determine their timelines and cost that will be incurred depending on their product and available resources.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Book part
Publication date: 24 April 2023

Kohtaro Hitomi, Keiji Nagai, Yoshihiko Nishiyama and Junfan Tao

In this study, the authors investigate methods of sequential analysis to test prospectively for the existence of a unit root against stationary or explosive states in a p-th order…

Abstract

In this study, the authors investigate methods of sequential analysis to test prospectively for the existence of a unit root against stationary or explosive states in a p-th order autoregressive (AR) process monitored over time. Our sequential sampling schemes use stopping times based on the observed Fisher information of a local-to-unity parameter. In contrast to the Dickey–Fuller (DF) test statistic, the sequential test statistic has asymptotic normality. The authors derive the joint limit of the test statistic and the stopping time, which can be characterized using a 3/2-dimensional Bessel process driven by a time-changed Brownian motion. The authors obtain their limiting joint Laplace transform and density function under the null and local alternatives. In addition, simulations are conducted to show that the theoretical results are valid.

Article
Publication date: 25 November 2021

Saurabh Panwar, Vivek Kumar, P.K. Kapur and Ompal Singh

Software testing is needed to produce extremely reliable software products. A crucial decision problem that the software developer encounters is to ascertain when to terminate the…

Abstract

Purpose

Software testing is needed to produce extremely reliable software products. A crucial decision problem that the software developer encounters is to ascertain when to terminate the testing process and when to release the software system in the market. With the growing need to deliver quality software, the critical assessment of reliability, cost of testing and release time strategy is requisite for project managers. This study seeks to examine the reliability of the software system by proposing a generalized testing coverage-based software reliability growth model (SRGM) that incorporates the effect of testing efforts and change point. Moreover, the strategic software time-to-market policy based on costreliability criteria is suggested.

Design/methodology/approach

The fault detection process is modeled as a composite function of testing coverage, testing efforts and the continuation time of the testing process. Also, to assimilate factual scenarios, the current research exhibits the influence of software users refer as reporters in the fault detection process. Thus, this study models the reliability growth phenomenon by integrating the number of reporters and the number of instructions executed in the field environment. Besides, it is presumed that the managers release the software early to capture maximum market share and continue the testing process for an added period in the user environment. The multiattribute utility theory (MAUT) is applied to solve the optimization model with release time and testing termination time as two decision variables.

Findings

The practical applicability and performance of the proposed methodology are demonstrated through real-life software failure data. The findings of the empirical analysis have shown the superiority of the present study as compared to conventional approaches.

Originality/value

This study is the first attempt to assimilate testing coverage phenomenon in joint optimization of software time to market and testing duration.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 30 October 2019

Vibha Verma, Sameer Anand and Anu Gupta Aggarwal

The purpose of this paper is to identify and quantify the key components of the overall cost of software development when warranty coverage is given by a developer. Also, the…

Abstract

Purpose

The purpose of this paper is to identify and quantify the key components of the overall cost of software development when warranty coverage is given by a developer. Also, the authors have studied the impact of imperfect debugging on the optimal release time, warranty policy and development cost which signifies that it is important for the developers to control the parameters that cause a sharp increase in cost.

Design/methodology/approach

An optimization problem is formulated to minimize software development cost by considering imperfect fault removal process, faults generation at a constant rate and an environmental factor to differentiate the operational phase from the testing phase. Another optimization problem under perfect debugging conditions, i.e. without error generation is constructed for comparison. These optimization models are solved in MATLAB, and their solutions provide insights to the degree of impact of imperfect debugging on the optimal policies with respect to software release time and warranty time.

Findings

A real-life fault data set of Radar System is used to study the impact of various cost factors via sensitivity analysis on release and warranty policy. If firms tend to provide warranty for a longer period of time, then they may have to bear losses due to increased debugging cost with more number of failures occurring during the warrantied time but if the warranty is not provided for sufficient time it may not act as sufficient hedge during field failures.

Originality/value

Every firm is fighting to remain in the competition and expand market share by offering the latest technology-based products, using innovative marketing strategies. Warranty is one such strategic tool to promote the product among masses and develop a sense of quality in the user’s mind. In this paper, the failures encountered during development and after software release are considered to model the failure process.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 9/10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 March 2013

Dalibor Petković, Mirna Issa, Nenad D. Pavlović and Lena Zentner

The purpose of this paper is to propose a new methodological framework within which a compliant robotic joint can be studied.

Abstract

Purpose

The purpose of this paper is to propose a new methodological framework within which a compliant robotic joint can be studied.

Design/methodology/approach

A new method is presented for detecting the direction of the robotic joint rotation when subjected to an external collision force.

Findings

The behaviour of the silicone rubber shows strong non‐linearity, therefore, the sensor‐elements cannot be used for accurate measurements.

Originality/value

A new type of safe robotic mechanisms with an internal measuring system is proposed in this paper.

Details

Industrial Robot: An International Journal, vol. 40 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 February 2021

Anusha R. Pai, Gopalkrishna Joshi and Suraj Rane

This paper is focused at studying the current state of research involving the four dimensions of defect management strategy, i.e. software defect analysis, software quality…

Abstract

Purpose

This paper is focused at studying the current state of research involving the four dimensions of defect management strategy, i.e. software defect analysis, software quality, software reliability and software development cost/effort.

Design/methodology/approach

The methodology developed by Kitchenham (2007) is followed in planning, conducting and reporting of the systematic review. Out of 625 research papers, nearly 100 primary studies related to our research domain are considered. The study attempted to find the various techniques, metrics, data sets and performance validation measures used by researchers.

Findings

The study revealed the need for integrating the four dimensions of defect management and studying its effect on software performance. This integrated approach can lead to optimal use of resources in software development process.

Research limitations/implications

There are many dimensions in defect management studies. The authors have considered only vital few based on the practical experiences of software engineers. Most of the research work cited in this review used public data repositories to validate their methodology and there is a need to apply these research methods on real datasets from industry to realize the actual potential of these techniques.

Originality/value

The authors believe that this paper provides a comprehensive insight into the various aspects of state-of-the-art research in software defect management. The authors feel that this is the only research article that delves into the four facets namely software defect analysis, software quality, software reliability and software development cost/effort.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 22 March 2013

Dalibor Petković, Mirna Issa, Nenad D. Pavlović and Lena Zentner

The aim of this paper is to investigate implementations of carbon‐black filled silicone rubber for tactile sensation.

Abstract

Purpose

The aim of this paper is to investigate implementations of carbon‐black filled silicone rubber for tactile sensation.

Design/methodology/approach

The sensor‐elements for this tactile sensing structure were made by press‐curing from carbon‐black filled silicone rubber.

Findings

The behaviour of the silicone rubber shows strong non‐linearity, therefore, the sensor cannot be used for accurate measurements. The greatest advantage of this material lies in its high elasticity.

Originality/value

A new method for artificial tactile sensing skin for robotic applications.

Details

Sensor Review, vol. 33 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 July 2021

Avinash Kumar Shrivastava and Ruchi Sharma

The purpose of this paper is to develop a new software reliability growth model considering different fault distribution function before and after the change point.

Abstract

Purpose

The purpose of this paper is to develop a new software reliability growth model considering different fault distribution function before and after the change point.

Design/methodology/approach

In this paper, the authors have developed a framework to incorporate change-point in developing a hybrid software reliability growth model by considering different distribution functions before and after the change point.

Findings

Numerical illustration suggests that the proposed model gives better results in comparison to the existing models.

Originality/value

The existing literature on change point-based software reliability growth model assumes that the fault correction trend before and after the change is governed by the same distribution. This seems impractical as after the change in the testing environment, the trend of fault detection or correction may not follow the same trend; hence, the assumption of same distribution function may fail to predict the potential number of faults. The modelling framework assumes different distributions before and after change point in developing a software reliability growth model.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 42000