Search results

1 – 10 of 351
Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

42

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 24 August 2023

Fatih Yılmaz, Ercan Gürses and Melin Şahin

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test…

Abstract

Purpose

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test campaign and micro computerized tomography (microCT) imaging.

Design/methodology/approach

ASTM E8 tensile test specimens are designed and manufactured by EBM at an Arcam Q20 Plus machine. Surface quality is improved by machining to discard the effect of surface roughness. After surface machining, hot isostatic pressing (HIP) post-treatment is applied to half of the specimens to remove unsolicited internal defects. ASTM E8 tensile test campaign is carried out simultaneously with digital image correlation to acquire strain data for each sample. Finally, build direction and HIP post-treatment dependencies of elastoplastic properties are analyzed by F-test and t-test statistical analyses methods.

Findings

Modulus of elasticity presents isotropic behavior for each build direction according to F-test and t-test analysis. Yield and ultimate strengths vary according to build direction and post-treatment. Stiffness and strength properties are superior to conventional Ti-6Al-4V material; however, ductility turns out to be poor for aerospace structures compared to conventional Ti-6Al-4V alloy. In addition, micro CT images show that support structure leads to dense internal defects and pores at applied surfaces. However, HIP post-treatment diminishes those internal defects and pores thoroughly.

Originality/value

As a novel scientific contribution, this study investigates the effects of three orthogonal build directions on elastoplastic properties, while many studies focus on only two-build directions. Evaluation of Poisson’s ratio is the other originality of this study. Furthermore, another finding through micro CT imaging is that temporary support structures result in intense defects closer to applied surfaces; hence high-stress regions of structures should be avoided to use support structures.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 January 2024

Mohammad A Gharaibeh, Markus Feisst and Jürgen Wilde

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Abstract

Purpose

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Design/methodology/approach

The AgSn TLP test samples are manufactured using pre-defined optimized TLP bonding process parameters. Consequently, tensile and creep tests are conducted at various loading temperatures to generate stress–strain and creep data to accurately determine the elastic properties and two sets of Anand model creep coefficients. The resultant tensile- and creep-based constitutive models are subsequently used in extensive finite element simulations to precisely survey the mechanical response of the AgSn TLP bonds in power electronics due to different thermal loads.

Findings

The response of both models is thoroughly addressed in terms of stress–strain relationships, inelastic strain energy densities and equivalent plastic strains. The simulation results revealed that the testing conditions and parameters can significantly influence the values of the fitted Anand coefficients and consequently affect the resultant FEA-computed mechanical response of the TLP bonds. Therefore, this paper suggests that extreme care has to be taken when planning experiments for the estimation of creep parameters of the AgSn TLP joints.

Originality/value

In literature, there is no constitutive modeling data on the AgSn TLP bonds.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 2024

Shrutika Sharma, Vishal Gupta, Deepa Mudgal and Vishal Srivastava

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to…

Abstract

Purpose

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates.

Design/methodology/approach

The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination (R2) and mean absolute error (MAE).

Findings

Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments.

Research limitations/implications

The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study.

Originality/value

This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2023

Kei Kimura, Takeshi Onogi and Fuminobu Ozaki

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain…

Abstract

Purpose

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain rates, to propose appropriate reduction factors considering the strain rate effect.

Design/methodology/approach

The stress–strain relationships of 385 N/mm2, 440 N/mm2 and 630 N/mm2-class steel plates at elevated temperatures are examined at three strain rate values (0.3%/min, 3.0%/min and 7.5%/min), and the reduction factors for the effective yield strength at elevated temperatures are evaluated from the results. A differential evolution-based optimization is used to produce the reduction-factor curves.

Findings

The strain rate effect enhances with an increase in the standard design value of the yield point. The effective yield strength and standard design value of the yield point exhibit high linearity between 600 and 700 °C. In addition to effectively evaluating the test results, the proposed reduction-factor curves can also help determine the ultimate strength of a steel member at collapse.

Originality/value

The novelty of this study is the quantitative evaluation of the relationship between the standard design value of yield point at ambient temperature and the strain-rate effect at elevated temperatures. It has been observed that the effect of the strain rate at elevated temperatures increases with the increase in the standard design value of the yield point for various steel strength grades.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 August 2023

Rodrigo Enzo de Prada, Guillermo Rubén Bossio and Mariano Martín Bruno

The purpose of this study is to investigate how the amount of material used and printing parameters affect the mechanical and water sorption properties of acrylonitrile butadiene…

Abstract

Purpose

The purpose of this study is to investigate how the amount of material used and printing parameters affect the mechanical and water sorption properties of acrylonitrile butadiene styrene printed parts.

Design/methodology/approach

The specimens were printed using different printing parameters such as shell number, infill pattern and printing orientation, while accounting for the amount of material used. The mechanical properties of the printed parts were then evaluated using tensile, compression and flexural tests, along with sorption tests.

Findings

The results revealed that the maximum tensile stress of 31.41 MPa was obtained when using 100% infill and a horizontal printing orientation. Similarly, the maximum flexural strength and compression of 40.5 MPa and 100.7 MPa, respectively, were obtained with 100% infill. The printing orientation was found to have a greater impact on mechanical behavior compared to the number of shells or infill patterns. Specifically, the horizontal printing orientation resulted in specimens with at least 25% greater strength compared to the vertical printing orientation. Furthermore, the relationship between the amount of material used and strength was evident in the tensile and flexural tests, which showed a close correlation between the two.

Originality/value

This study’s originality lies in its focus on optimizing the amount of material used to achieve the best strength-to-mass ratio and negligible water infiltration. The findings showed that specimens with two shells and a 60% infill density exhibited the best strength-to-mass ratio.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

477

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

16

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 October 2023

Megavannan Mani, Thiyagu Murgaiyan and Pradeep Kumar Krishnan

This study focuses on the structural performance assessment of hybrid polymer composites for pick-and-place robot grippers used in critical infrastructure. This research involved…

Abstract

Purpose

This study focuses on the structural performance assessment of hybrid polymer composites for pick-and-place robot grippers used in critical infrastructure. This research involved the creation of composite materials with different nanoparticle concentrations, followed by extensive testing to assess the mechanical properties of the materials, such as strength, stiffness and durability.

Design/methodology/approach

The composites comprised bidirectional interply inclined carbon fibers (C), S-glass fibers (SG), E-glass (EG), an epoxy matrix and silica nanoparticles (SNiPs). During construction, the composite materials must be carefully layered using quasi-static sequence techniques (45°C1/45°SG2/45°EG2/45°C1/45°EG2/45°SG2/45°C1) to obtain the epoxy matrix reinforcement and bonding using 0, 2, 4 and 6 wt. % of silica nanoparticles.

Findings

According to various test findings, the 4 wt. % of SNiPs added to polymer plates exhibits the maximum strength outcomes. The average results of the tensile and flexural tests for the polymer composite plates with 4 wt. % addition SNiPs were 127.103 MPa and 223.145 MPa, respectively. The average results of the tensile and flexural tests for the plates with 0 wt.% SNiPs were 115.457 MPa and 207.316 MPa, respectively.

Originality/value

The authors hereby attest that the research paper they have submitted is the result of their own independent and unique labor. All of the sources from which the thoughts and passages were derived have been properly credited. The work has not been submitted for publication anywhere and is devoid of any instances of plagiarism.

Highlights

 

  1. The study enhances the engineering materials for innovative applications.

  2. The study explores the mechanical behavior of carbon/S-glass/E-glass fiber composites.

  3. Silica nanoparticles were enhancing mechanical characteristics of the composite structure.

The study enhances the engineering materials for innovative applications.

The study explores the mechanical behavior of carbon/S-glass/E-glass fiber composites.

Silica nanoparticles were enhancing mechanical characteristics of the composite structure.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 351