Search results

1 – 10 of 152
Open Access
Article
Publication date: 4 December 2017

Stefan Holmström, Frits De Haan, Ulrich Führer, Rami Pohja and Jaromir Janousek

There are a number of different approaches for calculating creep-fatigue (CF) damage for design, such as the French nuclear code RCC-MRx, the American ASME III NH and the British…

1239

Abstract

Purpose

There are a number of different approaches for calculating creep-fatigue (CF) damage for design, such as the French nuclear code RCC-MRx, the American ASME III NH and the British R5 assessment code. To acquire estimates for the CF damage, that are not overly conservative, both the cyclic material softening/hardening and the potential changes in relaxation behavior have to be considered. The data presented here and models are an initial glimpse of the ongoing European FP7 project MATISSE effort to model the softening and relaxation behavior of Grade 91 steel under CF loading. The resulting models are used for calculating the relaxed stress at arbitrary location in the material cyclic softening curve. The initial test results show that softening of the material is not always detrimental. The initial model development and the pre-assessment of the MATISSE data show that the relaxed stress can be robustly predicted with hold time, strain range and the cyclic life fraction as the main input parameters. The paper aims to discuss these issues.

Design/methodology/approach

Engineering models have been developed for predicting cyclic softening and relaxation for Gr. 91 steel at 550 and 600°C.

Findings

A simple engineering model can adequately predict the low cycle fatigue (LCF) and CF softening rates of Gr. 91 steel. Also a simple relaxation model was successfully defined for predicting relaxed stress of both virgin and cyclically softened material.

Research limitations/implications

The data are not yet complete and the models will be updated when the complete set of data in the MATISSE project is available.

Practical implications

The models described can be used for predicting P91 material softening in an arbitrary location (n/Nf0) of the LCF and CF cyclic life. Also the relaxed stress in the softened material can be estimated.

Originality/value

The models are simple in nature but are able to estimate both material softening and relaxation in arbitrary location of the softening curve. This is the first time the Wilshire methodology has been applied on cyclic relaxation data.

Details

International Journal of Structural Integrity, vol. 8 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 8 January 2020

Guillermo A. Riveros, Felipe J. Acosta, Reena R. Patel and Wayne Hodo

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The…

1049

Abstract

Purpose

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The exterior tissue of the rostrum covers the cartilage that surrounds the bones forming interlocking star shaped bones.

Design/methodology/approach

The aim of this work is to assess the mechanical behavior of four finite element models varying the type of formulation as follows: linear-reduced integration, linear-full integration, quadratic-reduced integration and quadratic-full integration. The paper also presents the load transfer mechanisms of the bone structure of the rostrum. The base material used in the study was steel with elastic–plastic behavior as a homogeneous material before applying materials properties that represents the behavior of bones, cartilages and tissues.

Findings

Conclusions are based on comparison among the four models. There is no significant difference between integration orders for similar type of elements. Quadratic-reduced integration formulation resulted in lower structural stiffness compared with linear formulation as seen by higher displacements and stresses than using linearly formulated elements. It is concluded that second-order elements with reduced integration are the alternative to analyze biological structures as they can better adapt to the complex natural contours and can model accurately stress concentrations and distributions without over stiffening their general response.

Originality/value

The use of advanced computational mechanics techniques to analyze the complex geometry and components of the paddlefish rostrum provides a viable avenue to gain fundamental understanding of the proper finite element formulation needed to successfully obtain the system behavior and hot spot locations.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 1 April 2002

58

Abstract

Details

Microelectronics International, vol. 19 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 6 December 2020

Benedetto Allotta, Lorenzo Fiorineschi, Susanna Papini, Luca Pugi, Federico Rotini and Andrea Rindi

This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to…

2719

Abstract

Purpose

This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to privilege a smooth behaviour efficiency, and the use of innovative production techniques. Results are quite surprising, as with a proper method it is possible to demonstrate that a cycloidal drive with Wolfrom topology should be an interesting solution for the proposed application.

Design/methodology/approach

With a functional approach, also considering materials and specifications related to the investigated application, it is possible to demonstrate that possible optimal solutions should be quite different respect to the ones that can be suggested with a conventional approach. In particular for proposed applications constraints related to encumbrances, the choice of new material has led to the innovative unconventional choice of a Wolfrom cycloidal speed reducer.

Findings

Provided solution is innovative respect current state of the art for machine currently used in construction yards: in terms of adopted transmission layout; in terms of chosen materials, resulting in an innovative solution.

Research limitations/implications

Current research has strong implications on the adoption of polimeric materials for the construction of reliable transmission for harsh industrial environment as the proposed case study (concrete mixer for construction yard).

Originality/value

Proposed transmission system is absolutely original and innovative respect current state of art also considering proposed materials and consequently production methods. This is an example of transmission designed to be built with polymeric materials by optimizing chosen topology respect to chosen material.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 12 October 2018

Joseph Henry Robinson, Ian Robert Thomas Ashton, Eric Jones, Peter Fox and Chris Sutcliffe

This paper aims to present an investigation into the variation of scan vector hatch rotation strategies in selective laser melting (SLM), focussing on how it effects density…

5630

Abstract

Purpose

This paper aims to present an investigation into the variation of scan vector hatch rotation strategies in selective laser melting (SLM), focussing on how it effects density, surface roughness, tensile strength and residual stress.

Design/methodology/approach

First the optimum angle of hatch vector rotation is proposed by analysing the effect of different increment angles on distribution of scan vectors. Sectioning methods are then used to determine the effect that the chosen strategies have on the density of the parts. The top surface roughness was analysed using optical metrology, and the tensile properties were determined using uni-axial tensile testing. Finally, a novel multi-support deflection geometry was used to quantify the effects of rotation angles on residual stress.

Findings

The results of this research showed that the hatch rotation angle had little effect on the density, top surface roughness and strength of the parts. The greatest residual stress deflection was measured parallel to unidirectional scan vectors. The use of hatch rotations other than alternating 90° showed little benefit in lowering the magnitude of residual stresses. However, the use of rotation angles with a good suitability measure distributes stresses in all directions more evenly for certain part geometries.

Research limitations/implications

All samples produced in this work were made from commercially pure titanium, therefore care must be taken when applying these results to other materials.

Originality/value

This paper serves to increase the understanding of SLM scanning strategies and their effect on the properties of the material.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

478

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 27 January 2023

Damira Dairabayeva, Asma Perveen and Didier Talamona

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a…

1020

Abstract

Purpose

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a weak bonding strength between dissimilar materials. Low interfacial bonding strength leads to defects, anisotropy and temperature gradient in materials which negatively impact the mechanical performance of the multi-material prints. The purpose of this study was to assess the performance of different interface geometry designs in terms of the mechanical properties of the specimens.

Design/methodology/approach

Tensile test specimens were printed using: mono-material without a boundary interface, mono-material with the interface geometries (Face-to-face; U-shape; T-shape; Dovetail; Encapsulation; Mechanical interlocking; and Overlap) and multi-material with the interface geometries. The materials chosen with high and low compatibility were Tough polylactic acid (PLA) and TPU.

Findings

The main results of this study indicate that the interface geometries with the mechanical constriction between materials provide better structural integrity to the specimens. Moreover, in the case of the mono-material parts, the most effective interface design was the mechanical interlocking for both Tough PLA and TPU. On the other hand, in the case of multi-material specimens, the encapsulation showed the highest ultimate tensile strength, whereas the overlap and T-shape presented more robust bonding.

Originality/value

This study examines the mechanical performance, particularly tensile strength, strain at break, Young’s modulus and yield strength of different interface designs which were not studied in the previous studies.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 1 August 1999

David Margaroni

165

Abstract

Details

Industrial Lubrication and Tribology, vol. 51 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 26 April 2024

Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…

Abstract

Purpose

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.

Design/methodology/approach

Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.

Findings

The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.

Originality/value

This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.

Graphical abstract

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of 152