Search results

1 – 10 of 501
Article
Publication date: 22 April 2024

Sixian Rao, Changwei Zhang, Fei Zhao, Lei Bao and Xiaoyi Wang

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Abstract

Purpose

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Design/methodology/approach

Corrosion of metals would be aggravated by CDI under applied stress. Notably, the presence of nitrogen in 316LN austenitic stainless steel (SS) would enhance the corrosion resistance compared to the nitrogen-absent 316L SS. To clarify the CDI behaviors, electrochemical corrosion experiments were performed on 316LN specimens under different applied stress levels. Complementary analyses, including three-dimensional morphological examinations by KH-7700 digital microscope and scanning electron microscopy coupled with energy dispersive spectroscopy, were conducted to investigate the macroscopic and microscopic corrosion morphology and to characterize the composition of corrosion products within pits. Furthermore, ion chromatography was used to analyze the solution composition variations after immersion corrosion tests of 316LN in a 6 wt.% FeCl3 solution compared to original FeCl3 solution. Electrochemical experiment results revealed the linear decrease in free corrosion potential with increasing applied stress. Electrochemical impedance spectroscopy results indicated that high tensile stress level damaged the integrity of passivation film, as evidenced by the remarkable reduction in electrochemical impedance. Ion chromatography analyses proved the concentrations increase of NO3 and NH4+ ion concentrations in the corrosion media after corrosion tests.

Findings

The enhanced corrosion resistance of 316LN SS is attributable to the presence of nitrogen.

Research limitations/implications

The scope of this study is confined to the influence of tensile stress on the electrochemical corrosion of 316LN at ambient temperatures; it does not encompass the potential effects of elevated temperatures or compressive stress.

Practical implications

The resistance to stress electrochemical corrosion in SS may be enhanced through nitrogen alloying.

Originality/value

This paper presents a systematic investigation into the stress electrochemical corrosion of 316LN, marking the inaugural study of its impact on corrosion behaviors and underlying mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 January 2023

Ramesh Chand, Vishal S. Sharma, Rajeev Trehan and Munish Kumar Gupta

The purpose of this study is to find the best geometries among the cylindrical, enamel and honeycomb geometries based upon the mechanical properties (tensile test, compression…

Abstract

Purpose

The purpose of this study is to find the best geometries among the cylindrical, enamel and honeycomb geometries based upon the mechanical properties (tensile test, compression test and shear test). Further this obtained geometry could be used to fabricate products like exoskeleton and its supporting members.

Design/methodology/approach

The present research focuses on the mechanical testing of cylindrical, enamel and honeycomb-shaped parts fabricated through multi-jet printing (MJP) process with a wall thickness of 0.26, 0.33, 0.4 and 0.66 mm. The polymer specimens (for tensile, compression and shear tests) were fabricated using a multi-jet fusion process. The experimental results were compared with the numerical modelling. Finally, the optimal geometry was obtained, and the influence of wall thicknesses on various mechanical properties (tensile, compression and shear) was studied.

Findings

In comparison to cylindrical, enamel structures the honeycomb structures required less time to fabricate and had lower tensile, compressive and shear strengths. The most efficient geometry for fully functional parts where tensile, compressive and shear forces are present during application – cylindrical geometry is preferred followed by enamel, and then honeycomb. It was found that as the wall thickness of various geometries was increased, their ability to withstand tensile, compressive and shear loads also enhanced. The enamel shape structure exhibits greater strain energy storage capacity than other shape structures for compressive loads, and the strength to resist the compressive load will be lower. In the case of cylindrical geometries for tensile loading, the resisting area toward the loading will be higher in comparison to honeycomb- and enamel-based structures. At the same time, the ability to store the stain energy is less. The results of the tensile, compression and shear load finite element analysis using ANSYS are in agreement with those of the experiments.

Originality/value

From the insight of literature review, it is found that a wide range of work is done on fused deposition modeling (FDM) process. But in comparison to FDM, the MJP provide the better dimensional accuracy and surface properties (Lee et al., 2020). Therefore, it is observed that past research works not incorporated the effect of wall thickness of the embedded geometries on mechanical properties of the part fabricated on MJP (Gibson, n.d.). Hence, in this work, effect of wall thickness on tensile, compression and shear strength is considered as the main factor for the honeycomb, enamel and cylindrical geometries.

Article
Publication date: 22 May 2023

Pandimani

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to…

Abstract

Purpose

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to accentuate the nonlinear parametric finite element (FE) simulations of RC sections under monotonic loading.

Design/methodology/approach

The concrete matrix and steel reinforcement are the primary constituent materials of RC beams. The material properties such as tensile reinforcement area, tensile bars yield strength, concrete compressive strength and strain rate in tensile reinforcement at nominal strength have significantly influenced the ultimate response of RC beams. Therefore, these intensive parameters are considered in this study to ascertain their effect on the RC beam's ultimate behavior. The nonlinear response up to the ultimate load capacity and the crack evolutions of RC beams are predicted efficiently.

Findings

The parametric study reveals that increasing the tensile steel reinforcements (from Ast = 213–857 mm2) significantly improves the ultimate load capacity by 229% and yield deflections by 20%. However, it declines the ultimate deflection by 47% and ductility by 56% substantially. Varying the strain limit (?tn = 0.010–0.0015) of tensile reinforcement has proficiently increased the ultimate load-resisting capacity by 20%, whereas the ductility declined by 62%. When the concrete strength increases (from fck = 25–65 MPa), the cracking load increases profoundly by 51%, whereas the ultimate capacity has found an insignificant effect.

Originality/value

The load-deflection response plots extracted from the proposed numerical model exhibit satisfactory accuracy (less than 9% deviation) against the experimental curves available in the literature, which emphasizes the proficiency of the proposed FE model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 June 2023

Sanna F. Siddiqui, Andre Archer, Dustin Fandetti and Carl McGee

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight…

Abstract

Purpose

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight reduction savings. As such, the purpose of this study is to provide an understanding of the mechanical performance of these materials under extreme operational conditions characteristic of in-service environments.

Design/methodology/approach

This study is novel in that it has evaluated the tensile performance and fracture response of additively manufactured continuous carbon fiber embedded in an onyx matrix (i.e. nylon with chopped carbon fiber) at cryogenic and room temperatures, for specimens manufactured with an angle between the specimen lying plane and the working build plane of 0°, 45° and 90°.

Findings

Research findings reveal enhanced tensile properties (i.e. ultimate tensile strength and modulus of elasticity) by the 0° (X) built specimens, as compared with the 45° (XZ45) and 90° (Z) built specimens at cryogenic temperature. A reduction in ductility is observed at cryogenic temperature for all build orientations. Fractographic analysis reveals the presence of fiber pullout/elongation, pores within the onyx matrix and chopped carbon fiber near fracture zone of the onyx matrix.

Research limitations/implications

Research findings present tensile properties (i.e. ultimate tensile strength, modulus of elasticity and elongation%) for three-dimensional (3D)-printed onyx with and without reinforcing continuous carbon fiber composites at cryogenic and room temperatures. Reinforcement of continuous carbon fibers and reduction to cryogenic temperatures appears to result, in general, in an increase in the tensile strength and modulus of elasticity, with a reduction in elongation% as compared with the onyx matrix tensile performance reported at room temperature. Fracture analysis reveals continuous carbon fiber pull out for onyx–carbon fiber samples tested at room temperature and cryogenic temperatures, suggesting weak onyx matrix–continuous carbon fiber adhesion.

Originality/value

To the best of the authors’ knowledge, this study is the first study to report on the cryogenic tensile properties and fracture response exhibited by 3D-printed onyx–continuous carbon fiber composites. Evaluating the viability of common commercial 3D printing techniques in producing composite parts to withstand cryogenic temperatures is of critical import, for aerospace applications.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 October 2023

Cleiton Lazaro Fazolo De Assis and Cleber Augusto Rampazo

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged…

Abstract

Purpose

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged as a promising material for FFF due to their excellent mechanical properties. However, the optimal processing conditions and the effect of the blending ratio on the mechanical properties of the resulting workpieces are still unclear.

Design/methodology/approach

A statistical factorial matrix was designed, including infill pattern, printing speed, nozzle size, layer height and printing temperature as factors (with three levels). A total of 810 workpieces were printed using PC/ABS blends filament with the FFF. The workpieces’ finishing and mass were evaluated. Tensile tests were performed. Analysis of variance was performed to determine the main effects of the processing conditions on the mechanical properties.

Findings

The results showed that the PC/ABS (70/30) exhibited higher tensile. Tensile rupture corresponded to 30% of the tensile strength. The infill pattern showed the highest contribution to the responses. The concentric pattern showed higher tensile strength. Tensile strength and mass ratio demonstrated the influence of mass on tensile strength. The influence of printing parameters on deformation depended on the blend proportions. Higher printing speed and lower layer height provided better quality workpieces.

Originality/value

This study has implications for the design and manufacturing of three-dimensional printed parts using PC/ABS filaments. An extensive experimental matrix was applied, aiming at a complete understanding of mechanical behavior, considering the main printing parameters and combinations not explored by literature.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 June 2023

Abdul Kareem Abdul Jawwad and Mofid Mahdi

This article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and…

Abstract

Purpose

This article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and propagation of fatigue failure in thick shaft sections.

Design/methodology/approach

Experimental and numerical techniques were applied in the present study to explore the relationship(s) between welding residual-stress distribution and fatigue failure characteristics in a hydropower generator shaft. Experimental techniques included stereomicroscopy, optical and scanning electron microscopy (SEM), chemical analysis and mechanical testing. Finite element modelling (FEM) was used to model the shaft welding cycle in terms of thermal (temperature) history and the associated development of residual stresses within the weld joint.

Findings

Experimental analyses have confirmed the suitability of the used material for the intended application and confirmed the failure mode to be low cycle fatigue. The observed failure characteristics, however, did not match with the applied loading in terms of design stress levels, directionality and expected crack imitation site(s). FEM results have revealed the presence of a sharp stress peak in excess of 630 MPa (about 74% of material's yield strength) around weld start point and a non-uniform residual stress distribution in both the circumferential and through-thickness directions. The present results have shown very close matching between FEM results and observed failure characteristics.

Practical implications

The present article considers an actual industrial case of a hydropower generator shaft failure. Present results are valuable in providing insight information regarding such failures as well as some preventive design and fabrication measures for the hydropower and other power generation and transmission sector.

Originality/value

The presence of the aforementioned stress peak around welding start/end location and the non-uniform distribution of residual-stress field are in contrast to almost all published results based on some uniformity assumptions. The present FEM results were, however, the only stress distribution scenario capable of explaining the failure considered in the present research.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 June 2023

Kei Kimura, Takeshi Onogi and Fuminobu Ozaki

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain…

Abstract

Purpose

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain rates, to propose appropriate reduction factors considering the strain rate effect.

Design/methodology/approach

The stress–strain relationships of 385 N/mm2, 440 N/mm2 and 630 N/mm2-class steel plates at elevated temperatures are examined at three strain rate values (0.3%/min, 3.0%/min and 7.5%/min), and the reduction factors for the effective yield strength at elevated temperatures are evaluated from the results. A differential evolution-based optimization is used to produce the reduction-factor curves.

Findings

The strain rate effect enhances with an increase in the standard design value of the yield point. The effective yield strength and standard design value of the yield point exhibit high linearity between 600 and 700 °C. In addition to effectively evaluating the test results, the proposed reduction-factor curves can also help determine the ultimate strength of a steel member at collapse.

Originality/value

The novelty of this study is the quantitative evaluation of the relationship between the standard design value of yield point at ambient temperature and the strain-rate effect at elevated temperatures. It has been observed that the effect of the strain rate at elevated temperatures increases with the increase in the standard design value of the yield point for various steel strength grades.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

17

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 501