Search results

1 – 10 of over 7000
Article
Publication date: 25 October 2018

Shilpesh R. Rajpurohit and Harshit K. Dave

The purpose of this paper to study the tensile strength of the fused deposition modelling (FDM) printed PLA part. In recent times, FDM has been evolving from rapid prototyping to…

2276

Abstract

Purpose

The purpose of this paper to study the tensile strength of the fused deposition modelling (FDM) printed PLA part. In recent times, FDM has been evolving from rapid prototyping to rapid manufacturing where parts fabricated by FDM process can be directly used for application. However, application of FDM fabricated part is significantly affected by poor and anisotropic mechanical properties. Mechanical properties of FDM part can be improved by proper selection of process parameters.

Design/methodology/approach

In the present study, three process parameter, namely, raster angle, layer height and raster width, have been selected to study their effect on tensile properties. Parts are fabricated as per ASTM D638 Type I standard.

Findings

It has been observed that the highest tensile strength obtained at 0° raster angle. Lower value of layer height is observed to be good for higher tensile strength because of higher bonding area between the layers. At higher value of raster width, tensile strength is improved up to certain extent after which presence of void reduces the tensile strength.

Originality/value

In the present investigation, layer height and raster width have been also varied along with raster angle to study their effect on the tensile strength of FDM printed PLA part.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 August 2018

Hamed Hemmati Pourghashti, Malek Mohammad Ranjbar and Rahmat Madandoust

The purpose of this paper is to conduct a laboratory investigation on measuring the tensile strength of recycled concrete using a double punch test. Furthermore, one of the main…

Abstract

Purpose

The purpose of this paper is to conduct a laboratory investigation on measuring the tensile strength of recycled concrete using a double punch test. Furthermore, one of the main goals of this study is to compare the tensile and compressive strengths of recycled concrete samples.

Design/methodology/approach

Recycled concrete samples were made with variables such as aggregate type (natural stone and aggregate recycled concrete), different water-to-cement ratios and different treatment conditions in the first stage. In the next stage, the double punch test was performed on them, and finally the results obtained from experiments were analyzed and investigated.

Findings

According to the above tests, it was concluded that: first, according to the laboratory results, the strength of concrete containing recycled aggregates becomes closer to the strength of concrete containing natural aggregates whenever the water-to-cement ratio is higher. Second, upon investigating the treatment conditions, it was observed that the treatment had a greater effect on the strength of the recycled concrete. However, this effect was less tangible in tensile strength. Third, upon investigating the results of tensile strength, it can be said that the Barcelona test results were closer to the direct tensile test results compared to the Brazilian test results. This indicates the higher viability of Barcelona’s test results. Fourth, the results obtained from the Barcelona tensile test for recycled concrete were closer to the results of the direct tensile test compared to the concrete containing natural aggregates, which suggests that the Barcelona test is more suitable as a tensile test for recycled concrete. Fifth, the effects of various factors on tensile strength were somewhat less compared to the compressive strength, although very close. Sixth, the relationships provided by the regulation for concrete tensile strength on compressive strength were highly inconsistent with the results obtained from the direct tensile test, for which the consistency was higher for concrete containing natural aggregates compared to recycled concrete. Seventh, the dispersion of results obtained from tensile tests was higher for recycled concrete compared to concrete containing natural aggregates, but lesser of this dispersion was observed in the compressive strength.

Originality/value

According to the laboratory results, the strength of concrete containing recycled aggregates becomes closer to the strength of concrete containing natural aggregates whenever the water-to-cement ratio is higher. Upon investigating the treatment conditions, it was observed that the treatment had a greater effect on the strength of the recycled concrete. However, this effect was less tangible in tensile strength. On the basis on the results of the tensile strength, it can be said that the Barcelona test results were closer to the results of the direct tensile test compared to those of the Brazilian test. This indicates the higher viability of Barcelona’s test results. The results obtained from the Barcelona tensile test for recycled concrete were closer to the results of direct tensile test compared to the concrete containing natural aggregates, which suggests that the Barcelona test is more suitable as a tensile test for recycled concrete. The effects of various factors on tensile strength were somewhat less compared to the compressive strength, although very close. The relationships provided by the regulation for concrete tensile strength on compressive strength were highly inconsistent with the results obtained from the direct tensile test, for which the consistency was higher for concrete containing natural aggregate compared to recycled concrete. The dispersion of results obtained from tensile tests was higher for recycled concrete compared to concrete containing natural aggregate, but lesser of this dispersion was observed in the compressive strength.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

11

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 25 April 2022

Afikah Binti Rahim and Hareyani Zabidi

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were

Abstract

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were statistically evaluated from the rock mechanic laboratory works at the selected sections around 2,000 m of the tunnel (named as NATM-1). According to a statistical analysis, lithotypes, geological structures, and region geology have a significant impact on the mechanical behaviour of the metasedimentary rock. In the Brazilian test, the fracture behaviour of the disc specimens was highly related to the reliability and precision of the experimental data by validations of methods. In this work, the impact of different loading methods and rock lithotypes on the failure mechanism of Brazilian discs was examined utilising five different metasedimentary rock types and three different loading methods. During the loading operation, the strain and displacement fields of the specimens were recorded and evaluated using a computerised strain gauge system. The rock types, according to experimental data, have a significant impact on the peak load and deformation properties of Brazilian discs. With the method below, tensile strength point of a disc specimen is clearly regulated by the material stiffness and tensile–compression ratio. Seismic occurrences have had a substantial impact on changing the rock and exerting forces that may affect its mechanical characteristics as well as its vulnerability to weathering effects or discontinuities. As a result, the goal of this study is to look into the connection between rock mechanics and metasedimentary rock stress analysis in NATM-1, Karak, Pahang.

Details

Sustainability Management Strategies and Impact in Developing Countries
Type: Book
ISBN: 978-1-80262-450-2

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

471

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 6 October 2023

Cleiton Lazaro Fazolo De Assis and Cleber Augusto Rampazo

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged…

Abstract

Purpose

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged as a promising material for FFF due to their excellent mechanical properties. However, the optimal processing conditions and the effect of the blending ratio on the mechanical properties of the resulting workpieces are still unclear.

Design/methodology/approach

A statistical factorial matrix was designed, including infill pattern, printing speed, nozzle size, layer height and printing temperature as factors (with three levels). A total of 810 workpieces were printed using PC/ABS blends filament with the FFF. The workpieces’ finishing and mass were evaluated. Tensile tests were performed. Analysis of variance was performed to determine the main effects of the processing conditions on the mechanical properties.

Findings

The results showed that the PC/ABS (70/30) exhibited higher tensile. Tensile rupture corresponded to 30% of the tensile strength. The infill pattern showed the highest contribution to the responses. The concentric pattern showed higher tensile strength. Tensile strength and mass ratio demonstrated the influence of mass on tensile strength. The influence of printing parameters on deformation depended on the blend proportions. Higher printing speed and lower layer height provided better quality workpieces.

Originality/value

This study has implications for the design and manufacturing of three-dimensional printed parts using PC/ABS filaments. An extensive experimental matrix was applied, aiming at a complete understanding of mechanical behavior, considering the main printing parameters and combinations not explored by literature.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 June 2023

Sanna F. Siddiqui, Andre Archer, Dustin Fandetti and Carl McGee

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight…

Abstract

Purpose

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight reduction savings. As such, the purpose of this study is to provide an understanding of the mechanical performance of these materials under extreme operational conditions characteristic of in-service environments.

Design/methodology/approach

This study is novel in that it has evaluated the tensile performance and fracture response of additively manufactured continuous carbon fiber embedded in an onyx matrix (i.e. nylon with chopped carbon fiber) at cryogenic and room temperatures, for specimens manufactured with an angle between the specimen lying plane and the working build plane of 0°, 45° and 90°.

Findings

Research findings reveal enhanced tensile properties (i.e. ultimate tensile strength and modulus of elasticity) by the 0° (X) built specimens, as compared with the 45° (XZ45) and 90° (Z) built specimens at cryogenic temperature. A reduction in ductility is observed at cryogenic temperature for all build orientations. Fractographic analysis reveals the presence of fiber pullout/elongation, pores within the onyx matrix and chopped carbon fiber near fracture zone of the onyx matrix.

Research limitations/implications

Research findings present tensile properties (i.e. ultimate tensile strength, modulus of elasticity and elongation%) for three-dimensional (3D)-printed onyx with and without reinforcing continuous carbon fiber composites at cryogenic and room temperatures. Reinforcement of continuous carbon fibers and reduction to cryogenic temperatures appears to result, in general, in an increase in the tensile strength and modulus of elasticity, with a reduction in elongation% as compared with the onyx matrix tensile performance reported at room temperature. Fracture analysis reveals continuous carbon fiber pull out for onyx–carbon fiber samples tested at room temperature and cryogenic temperatures, suggesting weak onyx matrix–continuous carbon fiber adhesion.

Originality/value

To the best of the authors’ knowledge, this study is the first study to report on the cryogenic tensile properties and fracture response exhibited by 3D-printed onyx–continuous carbon fiber composites. Evaluating the viability of common commercial 3D printing techniques in producing composite parts to withstand cryogenic temperatures is of critical import, for aerospace applications.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 May 2023

Pradeep Kumar Mishra and Jagadesh T.

The tensile behavior of additively manufactured nylon-based carbon fiber-reinforced composites (CFRP) is an important criterion in aerospace and automobile structural design. So…

Abstract

Purpose

The tensile behavior of additively manufactured nylon-based carbon fiber-reinforced composites (CFRP) is an important criterion in aerospace and automobile structural design. So, this study aims to evaluate and validate the tensile stiffness of printed CFRP composites (low- and high-volume fraction fiber) using the volume average stiffness (VAS) model in consonance with experimental results. In specific, the tensile characterization of printed laminate composites is studied under the influence of raster orientations and process-induced defects.

Design/methodology/approach

CFRP composite laminates of low- and high-volume fraction carbon fiber of different raster orientations (0°, ± 45° and 0/90°) were fabricated using the continuous fiber 3D printing technique, and tensile characteristics of laminates were done on a universal testing machine with the crosshead speed of 2 mm/min. The induced fracture surface of laminates due to tensile load was examined using the scanning electron microscopy technique.

Findings

The VAS model can predict the tensile stiffness of printed CFRP composites with different raster orientations at an average prediction error of 5.94% and 10.58% for low- and high-volume fiber fractions, respectively. The unidirectional CFRP laminate composite with a high-volume fraction (50%) of carbon fiber showed 50.79% more tensile stiffness and 63.12% more tensile strength than the low-volume fraction (26%) unidirectional composite. Fiber pullout, fiber fracture and ply delamination are the major failure appearances observed in fracture surfaces of laminates under tensile load using scanning electron microscopy.

Originality/value

This investigation demonstrates the novel methodology to study specific tensile characteristics of low- and high-volume fraction 3D printed CFRP composite.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

41

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 10 January 2023

Shrutika Sharma, Vishal Gupta and Deepa Mudgal

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the…

Abstract

Purpose

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the need of second operation. This study aims to use additive manufacturing (AM) process for fabrication of biodegradable orthopedic small locking bone plates to overcome complications related to metallic biomaterials.

Design/methodology/approach

Fused deposition modeling technique has been used for fabrication of bone plates. The effect of varying printing parameters such as infill density, layer height, wall thickness and print speed has been studied on tensile and flexural properties of bone plates using response surface methodology-based design of experiments.

Findings

The maximum tensile and flexural strengths are mainly dependent on printing parameters used during the fabrication of bone plates. Tensile and flexural strengths increase with increase in infill density and wall thickness and decrease with increase in layer height and wall thickness.

Research limitations/implications

The present work is focused on bone plates. In addition, different AM techniques can be used for fabrication of other biomedical implants.

Originality/value

Studies on application of AM techniques on distal ulna small locking bone plates have been hardly reported. This work involves optimization of printing parameters for development of distal ulna-based bone plate with high mechanical strength. Characterization of microscopic fractures has also been performed for understanding the fracture behavior of bone plates.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 7000