Search results

1 – 10 of 42
Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 26 April 2024

Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…

Abstract

Purpose

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.

Design/methodology/approach

The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.

Findings

The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.

Originality/value

The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.

Details

Smart and Resilient Transportation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1101

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 24 April 2024

Ozan Güngör and Mehtap Yücel Güngör

The hospitality industry is on the cusp of a culinary revolution, propelled by the integration of smart cooking technologies and artificial intelligence (AI). This article delves…

Abstract

Purpose

The hospitality industry is on the cusp of a culinary revolution, propelled by the integration of smart cooking technologies and artificial intelligence (AI). This article delves into how these innovations are transforming hotel and restaurant kitchens, emphasizing food quality, operational efficiency and sustainability. Through AI, the culinary domain promises not just refined dining experiences but also a fundamental reshaping of kitchen operations.

Design/methodology/approach

The study includes a document review prepared by examining the academic literature regarding the chosen concepts in a wide range of contexts.

Findings

Smart cooking provides much convenience in working life with the help of technology, and this technology will be given more space in the future.

Originality/value

This article presents a review of the relevant literature on smart cooking systems, one of the developing digital gastronomy tools.

Details

Worldwide Hospitality and Tourism Themes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4217

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 29 December 2023

Kiia Aurora Einola, Laura Remes and Kenneth Dooley

This study aims to explore an emerging collection of smart building technologies, known as smart workplace solutions (SWS), in the context of facilities management (FM).

Abstract

Purpose

This study aims to explore an emerging collection of smart building technologies, known as smart workplace solutions (SWS), in the context of facilities management (FM).

Design/methodology/approach

This study is based on semi-structured interviews with facility managers in Finland, Norway and Sweden who have deployed SWSs in their organizations. SWS features, based on empirical data from a previous study, were also used to further analyse the interviews.

Findings

It analyses the benefits that SWSs bring from the facility management point of view. It is clear that the impetus for change and for deploying SWS in the context of FM is primarily driven by cost savings related to reductions in office space.

Research limitations/implications

This research has been conducted with a focus on office buildings only. However, other building types can learn from the benefits that facility managers receive in the area of user-centred smart buildings.

Practical implications

SWSs are often seen as employee experience solutions that are only related to “soft” elements such as collaboration, innovation and learning. Understanding the FM business case can help make a more practical case for their deployment.

Originality/value

SWSs are an emerging area, and this study has collected data from facility managers who use them daily.

Details

Facilities , vol. 42 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Book part
Publication date: 23 April 2024

Kaneez Masoom, Anchal Rastogi and Shad Ahmad Khan

Knowledge management (KM) is an important topic in the age of big data, and this study adds to the existing body of literature by providing a novel KM perspective on the…

Abstract

Knowledge management (KM) is an important topic in the age of big data, and this study adds to the existing body of literature by providing a novel KM perspective on the technological phenomenon of artificial intelligence (AI). This study aims to discover how AI might facilitate knowledge-based business-to-business (B2B) marketing. In this chapter, the authors take a close look at the building blocks of AI and the relationships between them. Future research directions and also the effects of the various market information building components on B2B marketing are discussed. The study’s approach is theoretical; it tries to provide a framework for characterising the phenomenon of AI and its constituent parts. Additionally, this chapter provides a methodical analysis of the three categories of market information crucial to B2B marketing: knowledge of customers, knowledge of users, and knowledge of external markets. This research looks at AI through the lens of the conventional data processing framework, analysing the six pillars upon which AI systems are founded. It also explained how the framework’s components work together to transform data into actionable information. In this chapter, the authors will look at how AI works and how it can benefit B2B knowledge-based marketing. It’s not aimed at AI experts but rather at general marketing managers. In this chapter, the possible effects of AI on B2B marketing are discussed using examples from the real world.

Details

Digital Influence on Consumer Habits: Marketing Challenges and Opportunities
Type: Book
ISBN: 978-1-80455-343-5

Keywords

Open Access
Article
Publication date: 29 April 2024

Dada Zhang and Chun-Hsing Ho

The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the…

Abstract

Purpose

The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the classification of pavement conditions.

Design/methodology/approach

Four sensors were placed on the vehicle’s control arms and one inside the vehicle to collect vibration acceleration data for analysis. The Analysis of Variance (ANOVA) tests were performed to diagnose the effect of the vehicle-based sensors’ placement in the field. To classify road conditions and identify pavement distress (point of interest), the probability distribution was applied based on the magnitude values of vibration data.

Findings

Results from ANOVA indicate that pavement sensing patterns from the sensors placed on the front control arms were statistically significant, and there is no difference between the sensors placed on the same side of the vehicle (e.g., left or right side). A reference threshold (i.e., 1.7 g) was computed from the distribution fitting method to classify road conditions and identify the road distress based on the magnitude values that combine all acceleration along three axes. In addition, the pavement temperature was found to be highly correlated with the sensing patterns, which is noteworthy for future projects.

Originality/value

The paper investigates the effect of pavement sensors’ placement in assessing road conditions, emphasizing the implications for future road condition assessment projects. A threshold value for classifying road conditions was proposed and applied in class assignments (I-17 highway projects).

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 42