Search results

1 – 10 of 133
Article
Publication date: 25 March 2024

Yu Huang, Xiaofen Ji, Lina Zhai and Francisca Margarita Ocran

Breast cancer has become the largest cancer in the world today. Health problems for women with breast cancer need to be addressed urgently. This study aims to select the best…

Abstract

Purpose

Breast cancer has become the largest cancer in the world today. Health problems for women with breast cancer need to be addressed urgently. This study aims to select the best method for preparing temperature-sensitive sports underwear, and to verify the feasibility of using K-type thermocouple threads in underwear fabrics.

Design/methodology/approach

In the experiments, two samples were designed for temperature-sensitive performance tests and the effects produced by different outer layer structures were investigated. In the second step, K-type thermocouple wires were integrated into sports underwear. The comfort and feasibility of the temperature-sensitive underwear were investigated.

Findings

It was finally verified to obtain the best comfort and temperature-sensing performance of K-type thermocouple filaments integrated into sports underwear with plain stitching.

Originality/value

The underwear has a certain prospect for the application of smart apparel based on breast cancer health monitoring, which is of some significance for monitoring smart apparel.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 March 2024

Zhong Jin, Xiang Li, Feng He, Fangting Liu, Jinyu Li and Junhui Li

The performance of oil-filled pressure cores is very much affected by the corrugated diaphragm and the oil filling volume. The purpose of this paper is to show the effects of…

Abstract

Purpose

The performance of oil-filled pressure cores is very much affected by the corrugated diaphragm and the oil filling volume. The purpose of this paper is to show the effects of different corrugated diaphragms, different oil filling volumes and different treatments of the corrugated diaphragms on the performance of pressure sensors.

Design/methodology/approach

Pressure-sensitive cores with different diaphragm diameters, different diaphragm ripple numbers and different oil filling volumes are produced, and thermal cycling is introduced to improve the diaphragm performance, and finally the performance of each pressure-sensitive core is tested and the test data are analyzed and compared.

Findings

The experimental results show that the larger the diameter of the corrugated diaphragm used for encapsulation, the better the performance. For pressure-sensitive cores using smaller diameter corrugated diaphragms, the performance of one corrugation is better than that of two corrugations. When the number of corrugations and the diameter are the same size, the performance of the outer ring of the diaphragm with concave corrugations is better than that with convex corrugations. At the same time, the diaphragm after thermal cycling treatment and appropriate reduction of encapsulated oil filling can improve the performance of the pressure-sensitive core.

Originality/value

By exploring the effects of corrugated diaphragm and oil filling volume on the performance of oil-filled pressure cores, the design of oil-filled pressure sensors can be guided to improve sensor performance.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 March 2024

Sajad Pirsa and Fahime Purghorbani

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…

Abstract

Purpose

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.

Design/methodology/approach

Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.

Findings

Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.

Originality/value

Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 February 2024

Amruta Rout, Golak Bihari Mahanta, Bibhuti Bhusan Biswal, Renin Francy T., Sri Vardhan Raj and Deepak B.B.V.L.

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic…

79

Abstract

Purpose

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic situation like COVID-19. The purposed research work can help in better management of pandemic situations in rural areas as well as developing countries where medical facility is not easily available.

Design/methodology/approach

It becomes very difficult for the medical staff to have a continuous check on patient’s condition in terms of symptoms and critical parameters during pandemic situations. For dealing with these situations, a service mobile robot with multiple sensors for measuring patients bodily indicators has been proposed and the prototype for the same has been developed that can monitor and aid the patient using the robotic arm. The fuzzy controller has also been incorporated with the mobile robot through which decisions on patient monitoring can be taken automatically. Mamdani implication method has been utilized for formulating mathematical expression of M number of “if and then condition based rules” with defined input Xj (j = 1, 2, ………. s), and output yi. The inputs and output variables are formed by the membership functions µAij(xj) and µCi(yi) to execute the Fuzzy Inference System controller. Here, Aij and Ci are the developed fuzzy sets.

Findings

The fuzzy-based prediction model has been tested with the output of medicines for the initial 27 runs and was validated by the correlation of predicted and actual values. The correlation coefficient has been found to be 0.989 with a mean square error value of 0.000174, signifying a strong relationship between the predicted values and the actual values. The proposed research work can handle multiple tasks like online consulting, continuous patient condition monitoring in general wards and ICUs, telemedicine services, hospital waste disposal and providing service to patients at regular time intervals.

Originality/value

The novelty of the proposed research work lies in the integration of artificial intelligence techniques like fuzzy logic with the multi-sensor-based service robot for easy decision-making and continuous patient monitoring in hospitals in rural areas and to reduce the work stress on medical staff during pandemic situation.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 28 March 2024

Hans Voordijk, Seirgei Miller and Faridaddin Vahdatikhaki

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to…

Abstract

Purpose

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to prescriptive systems. Prescriptive or operator guidance systems propose operators actionable compaction strategies and guidance, based on the data collected. It is investigated how these systems mediate the perceptions and actions of operators in road pavement practice.

Design/methodology/approach

A case study is conducted on the specific application of an operator guidance system in a road pavement project. In this case study, comprehensive information is presented regarding the process of converting input in the form of data from cameras and sensors into useful output. The ways in which the operator guidance systems translate data into actionable guidance for operators are analyzed from the technological mediation perspective.

Findings

Operator guidance systems mediate actions of operators physically, cognitively and contextually. These different types of action mediation are related to preconditions for successful implementation and use of these systems. Coercive interventions only succeed if there is widespread agreement among the operators. Persuasive interventions are most effective when collective and individual interests align. Contextual influence relates to designs of the operator guidance systems that determine human-technology interactions when using them.

Originality/value

This is the first study that analyzes the functioning of an operator guidance system using the technological mediation approach. It adds a new perspective on the interaction between this system and its users in road pavement practice.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of 133