Search results

1 – 10 of over 7000
Article
Publication date: 11 May 2010

Jegenathan Krishnasamy, Kah‐Yoong Chan and Teck‐Yong Tou

The purpose of this paper is to address the influence of deposition process parameters. The substrate heating mechanisms are also discussed.

Abstract

Purpose

The purpose of this paper is to address the influence of deposition process parameters. The substrate heating mechanisms are also discussed.

Design/methodology/approach

Deposition duration, sputtering power, working gas pressure, and substrate heater temperature on substrate heating in the direct current (DC) magnetron sputtering deposition process were investigated.

Findings

Results from the experiments show that, in DC magnetron sputtering deposition process, substrate heating is largely influenced by the process parameters and conditions.

Originality/value

This paper usefully demonstrates that substrate heating effects can be minimized by adjusting and selecting the proper sputtering process parameters; the production cost can be reduced by employing a higher sputtering power, lower working gas pressure and shorter deposition duration.

Details

Microelectronics International, vol. 27 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 24 July 2019

Rong Li and Jun Xiong

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was affected…

Abstract

Purpose

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was affected by the substrate shape through finite element analysis, including distributions of thermal energy and temperature gradient in the molten pool and deposited layers.

Design/methodology/approach

Three geometric shapes, namely, square, rectangle and round were chosen in simulation, and validation tests were carried out by corresponding experiments.

Findings

The thermal energy conduction ability of the deposited layers is the best on the round substrate and the worst on the rectangular substrate. The axial maximum temperature gradients in the molten pool along the deposition path with the round substrate are the largest during the deposition process. At the deposition ending moment, the circumferential temperature gradients of all layers with the round substrate are the largest. A large temperature gradient usually stands for a good heat conduction condition. Altogether, the round substrate is more suitable for the fabrication of circular thin-walled parts.

Originality/value

The predicted thermal distributions of the circular thin-walled part with various substrate shapes are helpful to understand the influence of substrate shape on the thermal energy transmission behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 January 2008

Ming Fang, Sanjeev Chandra and Chul B. Park

The purpose of this paper is to determine conditions under which good metallurgical bonding was achieved in 3D objects formed by depositing tin droplets layer by layer.

1830

Abstract

Purpose

The purpose of this paper is to determine conditions under which good metallurgical bonding was achieved in 3D objects formed by depositing tin droplets layer by layer.

Design/methodology/approach

Molten tin droplets (0.18‐0.75 mm diameter) were deposited using a pneumatic droplet generator on an aluminum substrate. The primary parameters varied in experiments were those found to most affect bonding between droplets on different layers: droplet temperature (varied from 250 to 325°C) and substrate temperature (varied from 100 to 190°C). Droplet generation frequency was kept low enough (1‐10 Hz) that each layer of droplets solidified and cooled down before another molten droplet impinged on it.

Findings

In this paper, a one dimensional heat transfer model was used to predict the minimum droplet and substrate temperatures required to remelt a thin layer of the substrate and ensure good bonding of impinging droplets. Cross‐sections through samples confirmed that increasing either the droplet temperature or the substrate temperature to the predicted remelting region produces good bonding between deposition layers.

Originality/value

This paper used a practical model to provide reasonable prediction of conditions for droplet fusion which is essential to droplet‐based manufacturing. The feasibility of fabricating 3D metal objects by deposition of molten metal droplets has been well demonstrated.

Details

Rapid Prototyping Journal, vol. 14 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1998

J. Falk

The influence of process heat, with regard to wire‐ and substrate‐materials, on the adhesion of wire‐bonds was investigated. Temperature increases up to 200°C were measured on the…

Abstract

The influence of process heat, with regard to wire‐ and substrate‐materials, on the adhesion of wire‐bonds was investigated. Temperature increases up to 200°C were measured on the interface between surface and wire. This temperature is the basis for demonstrating the important influence of dissipated process heat on the cold welding process of wire‐bonding. Complementary calculations to evaluate the equation of thermal conductivity were carried out using the finite element (FE) method. Bonding tests were able to verify the calculations. These thermodynamical considerations give us a new method to optimize the construction and the choice of materials within the wire‐bond process.

Details

Microelectronics International, vol. 15 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 February 2017

Peter Lukacs, Alena Pietrikova, Beata Ballokova, Dagmar Jakubeczyova and Ondrej Kovac

This paper aims to find the optimal deposition conditions for achieving the homogenous structure of the silver layers onto three types of polymeric substrates as well as on the…

Abstract

Purpose

This paper aims to find the optimal deposition conditions for achieving the homogenous structure of the silver layers onto three types of polymeric substrates as well as on the rigid substrates. For this reason, the detailed investigation of the silver-based layers deposited at different technological conditions by microscopic methods is presented in this paper.

Design/methodology/approach

The special test pattern has been designed and deposited at different substrate temperatures by using two types of generally available silver-based nano-inks. Cross-sections and 3D profiles of the deposited silver layers have been profoundly analysed by using the optical profiler Sensofar S Neox on the generally used polymeric (PI, PET and PEN) and rigid substrates (951 and 9K7 LTCC, glass and alumina).

Findings

The results prove the strong correlation between the substrate temperature during the deposition process and the final shape of the created structure which has the a direct impact on the layers’ homogeneity. The results also prove the theory of the coffee ring effect creation in the inkjet printing technology.

Originality/value

The main benefit of this paper lies in the possibility of the homogeneity achievement of the deposited silver-based layers on the several polymeric and rigid substrates by managing the temperature during the deposition. The paper also offers the comparative study of nano-inks’ behaviour on several polymeric and rigid substrates.

Details

Circuit World, vol. 43 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 April 2012

Duncan Camilleri

Power electronics are usually soldered to Al2‐O3 direct‐bond‐copper (DBC) substrates to increase thermal diffusivity, while at the same time increasing electrical isolation…

Abstract

Purpose

Power electronics are usually soldered to Al2‐O3 direct‐bond‐copper (DBC) substrates to increase thermal diffusivity, while at the same time increasing electrical isolation. However, soldering gives rise to inherent residual stresses and out‐of‐plane deformation. The purpose of this paper is to look at the effect of soldering processes of Al2‐O3 DBC substrates to copper plates and power electronics, on their thermal fatigue life and warpage.

Design/methodology/approach

A numerical thermo‐mechanical finite element model, using the Chaboche material model, was developed to identify the thermal plastic strains evolved during soldering of DBC substrates to copper plates and power electronics. The plastic strains in conjunction with established extremely low cycle fatigue life prediction model for ductile material were used to predict the number of soldering cycles to failure. The predicted out‐of‐plane deformation and number of soldering cycles to failures was compared to realistic tests.

Findings

Soldering processes drastically reduce the thermal fatigue life of DBC substrates, giving rise to thermal cracking and premature failure. In this study the soldering process considered gave rise to out‐of‐plane deformations, consequently reducing heat dispersion in soldered DBC substrate assemblies. Furthermore, soldering gave rise to interface cracking and failed after three soldering cycles. Numerical finite element models were developed and are in good agreement with the experimental tests results.

Research limitations/implications

The influence of soldering processes of DBC substrates to copper plates and electronics on the thermal fatigue life should be taken into consideration when establishing the design life of DBC substrates. Finite element models can be utilised to optimize soldering processes and optimize the design of DBC substrates.

Originality/value

The effect of soldering processes on DBC substrates was studied. A numerical finite element model used for the prediction of design life cycle and out‐of‐plane deformation is proposed.

Details

Soldering & Surface Mount Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 May 2008

Mubarak Ali, Esah Hamzah and Mohammad Radzi Toff

The purpose of this paper is to examine the effect of substrate temperature on friction coefficient and surface roughness of titanium nitride (TiN) coatings deposited on…

1003

Abstract

Purpose

The purpose of this paper is to examine the effect of substrate temperature on friction coefficient and surface roughness of titanium nitride (TiN) coatings deposited on high‐speed steel (HSS) using commercially available cathodic arc evaporation physical vapour deposition system.

Design/methodology/approach

The goal of this work is to determine the usefulness of TiN coatings in order to improve the friction coefficient and surface roughness of HSS verses substrate temperature, as vastly used in cutting tool industry and many others. A Pin‐on‐Disc test was carried out to study the coefficient of friction verses sliding distance. Surface roughness of deposited coatings was studied via surface roughness tester and atomic force microscope (AFM).

Findings

Friction coefficient increased at higher temperature as compared to the coating deposited at lower substrate temperature. Surface roughness measured via both instruments showed similar trend in recorded data and, i.e. increased by increasing substrate temperature. AFM study showed that bearing ratio (per cent) decreased, whereas, fractal dimension increased with an increase in substrate temperature.

Research limitations/implications

It is implied that choosing a substrate temperature above 450°C in the existing coating system could damage some machine parts.

Practical implications

This scenario develops an approach to optimize the coating properties verses substrate temperature for specific application, such as cutting tools for automobiles and aircrafts.

Originality/value

The coating deposited at lower temperature showed better friction coefficient and surface roughness than the coating deposited at higher temperature and vice versa.

Details

Industrial Lubrication and Tribology, vol. 60 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 January 2013

S.S. Feng, T. Kim and T.J. Lu

The purpose of this paper is to present a porous medium model for forced air convection in pin/plate‐fin heat sinks subjected to non‐uniform heating of a hot gas impinging jet…

Abstract

Purpose

The purpose of this paper is to present a porous medium model for forced air convection in pin/plate‐fin heat sinks subjected to non‐uniform heating of a hot gas impinging jet. Parametric studies are performed to provide comparisons between inline square pin‐fin and plate‐fin heat sinks in terms of overall and local thermal performance for a fixed pressure drop.

Design/methodology/approach

Heat conduction in substrates is coupled with forced convection in the pin/plate‐fin flow channel. The forced convection is considered by employing the non‐Darcy model for fluid flow and the thermal non‐equilibrium model for heat transfer. A series of experiments is performed to validate the model for both the pin‐fin and plate‐fin heat sinks.

Findings

The present porous medium model is capable of capturing the presence of lateral heat spreading in the plate‐fins and the absence of lateral heat spreading in the pin‐fins under non‐uniform thermal boundary condition, attributing to the adoption of the orthotropic effective thermal conductivity for the solid phase in the energy equation. The present results show that the inline square pin‐fin heat sink has topological advantage over the plate‐fin heat sink, although the heat spreading through the plate‐fins on reducing the peak temperature on the substrate is pronounced.

Originality/value

This paper reports an original research on theoretical modeling of forced convection in pin/plate‐fin heat sinks subjected to the non‐uniform heating of an impinging jet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 January 2013

Dominik Jurków and Grzegorz Lis

The purpose of this paper is to present the application of low temperature cofired ceramics (LTCC) technology in the fabrication of a novel electronic device, which consists of an…

Abstract

Purpose

The purpose of this paper is to present the application of low temperature cofired ceramics (LTCC) technology in the fabrication of a novel electronic device, which consists of an antenna amplifier integrated with temperature stabilizer. The temperature controller consists of a thick‐film thermistor and heater, which has been optimized using geometry to achieve uniform temperature distribution on the whole electronic substrate.

Design/methodology/approach

LTCC technology was applied in the fabrication process of the novel device. The temperature distribution on the ceramic substrate and temperature stabilization time were analyzed using an IR camera. The heating ability of the heater was tested in a climatic chamber. The heater and thermistors parameters variability were estimated using a basic mathematical statistic.

Findings

The integrated device ensures proper temperature conditions of electronic components if the ambient temperature is lower than −40°C.

Research limitations/implications

The presented device is just a first prototype. Therefore, the fabrication of the next structures and further experiments will be needed to improve structural drawbacks and to analyze precisely the device reliability and parameters repeatability.

Practical implications

The device presented in the paper can be applied in systems working at very low ambient temperatures (even at −5°C). Moreover, a temperature stabilizer can increase the temperature of the whole device above −40°C, therefore, standard electronic components (which can work down to −40°C) can be used instead of specialized ones (which can work below −40°C).

Originality/value

This paper presents a novel temperature stabilizer.

Details

Microelectronics International, vol. 30 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 August 2020

Dongqing Yang, Jun Xiong and Rong Li

This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of

280

Abstract

Purpose

This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method.

Design/methodology/approach

An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size.

Findings

The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer.

Originality/value

The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 7000