Search results

1 – 10 of 525
Article
Publication date: 24 September 2020

Xuyang Jin, Jing Wang, Yiming Han, Nannan Sun and Jianrong Zhu

This study aims to present the discrepancy in oil film distribution in reciprocating motion experimentally with zero entraining velocity (ZEV) on a conventional ball-disk test rig…

Abstract

Purpose

This study aims to present the discrepancy in oil film distribution in reciprocating motion experimentally with zero entraining velocity (ZEV) on a conventional ball-disk test rig with oil lubrication.

Design/methodology/approach

Driven independently by two individual servomotors, a steel ball and a sapphire disc move at equal speed but in opposite directions in a triangle wave. The oil film images between the ball and the disc were recorded by a camera. After the experiments, the mid-section film thickness was evaluated by using a dichromatic interference intensity modulation approach.

Findings

The dimpled oil film in transient condition is shallower than that at steady state with the same load and velocities, and the transient dimple depth decreases with the decrease of time. The increase of the applied load offers a beneficial effect on lubrication. Boundary slippage happens in ZEV reciprocating motion. The slippage at the interface is related to the transient effect and applied load.

Originality/value

This study reveals the significant difference of the oil film variation in ZEV reciprocating motion, especially the complex boundary slippage at the interface of the oil and the sapphire disc.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0021

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 January 2020

Hongwei Tang, Jing Wang, Nannan Sun and Jianrong Zhu

The influence of the cam angular speed on the pressure, film thickness and temperature profiles at some selected angular positions together with the oil characteristics are…

Abstract

Purpose

The influence of the cam angular speed on the pressure, film thickness and temperature profiles at some selected angular positions together with the oil characteristics are investigated.

Design/methodology/approach

A high-order polynomial cam is used, and thermal elastohydrodynamic lubrication (EHL) calculations are carried out by the multi-grid method and line-line scanning technique.

Findings

It is found that the film thickness decreases with a decrease in angular speed. The depth of the dimple that occurred in the reverse motion is also reduced because of the recession in the “temperatureviscosity wedgeeffect.

Originality/value

It is revealed that the reduction in the cam angular speed makes the classical big surface dimple evolve into a small centralized dimple during the opposite sliding motion.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0327

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Shun Cui, Hiroshi Nishikawa, Jing Wang and Qian Zou

This study aims to use a thermal elastohydrodynamic lubrication (EHL) algorithm incorporating an Eyring flow model to solve a steady-state contact in simple sliding motion.

Abstract

Purpose

This study aims to use a thermal elastohydrodynamic lubrication (EHL) algorithm incorporating an Eyring flow model to solve a steady-state contact in simple sliding motion.

Design/methodology/approach

A theoretical model was used to investigate the effect of starvation on the surface dimple phenomenon by gradually reducing the thickness of the inlet oil layer.

Findings

The increase in the starvation degree reduces the dimple depth, film thickness, the pressure peak and the temperature rise. Under the severe starvation condition, the dimple is eliminated so that the EHL contact becomes partly parched. In elliptical results, for the same starvation parameters, the oil replenishment is stronger than that in circular contact.

Originality/value

This paper fulfils an exploration to study how the oil starvation influences the surface dimple phenomenon.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 May 2011

S. Askari, M.H. Shojaeefard and K. Goudarzi

The purpose of this paper is to carry out a comprehensive study of compressible flow over double wedge and biconvex airfoils using computational fluid dynamics (CFD) and three…

1242

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive study of compressible flow over double wedge and biconvex airfoils using computational fluid dynamics (CFD) and three analytical models including shock and expansion wave theory, Busemann's second‐order linearized approximation and characteristic method (CHM).

Design/methodology/approach

Flow over double‐wedge and biconvex airfoils was investigated by the CFD technique using the Spalart‐Allmaras turbulence model for computation of the Reynolds stresses. Flow was considered compressible, two dimensional and steady. The no slip condition was applied at walls and the Sutherland law was used to calculate molecular viscosity as a function of static temperature. First‐order upwind discretization scheme was used for the convection terms. Finite‐volume method was used for the entire solution domain meshed by quadratic computational cells. Busemann's theory, shock and expansion wave technique and CHM were the analytical methods used in this work.

Findings

Static pressure, static temperature and aerodynamic coefficients of the airfoils were calculated at various angles of attack. In addition, aerodynamic coefficients of the double‐wedge airfoil were obtained at various free stream Mach numbers and thickness ratios of the airfoil. Static pressure and aerodynamic coefficients obtained from the analytical and numerical methods were in excellent agreement with average error of 1.62 percent. Variation of the static pressure normal to the walls was negligible in the numerical simulation as well as the analytical solutions. Analytical static temperature far from the walls was consistent with the numerical values with average error of 3.40 percent. However, it was not comparable to the numerical temperature at the solid walls. Therefore, analytical solutions give accurate prediction of the static pressure and the aerodynamic coefficients, however, for the static temperature; they are only reliable far from the solid surfaces. Accuracy of the analytical aerodynamic coefficients is because of accurate prediction of the static pressure which is not considerably influenced by the boundary layer. Discrepancies between analytical and numerical temperatures near the walls are because of dependency of temperature on the boundary layer and viscous heating. Low‐speed flow near walls causes transformation of the kinetic energy of the free stream into enthalpy that leads to high temperature on the solid walls; which is neglected in the analytical solutions.

Originality/value

This paper is useful for researchers in the area of external compressible flows. This work is original.

Details

Engineering Computations, vol. 28 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 October 2017

Archana M., Gireesha B.J., Prasannakumara B.C. and Rama Subba Reddy Gorla

The effect of non-linear thermal radiation and variable thermo-physical properties are investigated in the Falkner-Skan flow of a Casson nanofluid in the presence of magnetic…

Abstract

Purpose

The effect of non-linear thermal radiation and variable thermo-physical properties are investigated in the Falkner-Skan flow of a Casson nanofluid in the presence of magnetic field. The paper aims to discuss this issue.

Design/methodology/approach

Selected bunch of similarity transformations are used to reduce the governing partial differential equations into a set of non-linear ordinary differential equations. The resultant equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth-order method along with shooting technique.

Findings

The velocity, temperature and concentration profiles are evaluated for several emerging physical parameters and are analyzed through graphs and tables in detail.

Research limitations/implications

This study only begins to reveal the research potential and pitfalls of research and publishing on boundary-layer flow, heat and mass transfer of Casson nanofluid past and the moving and static wedge-shaped bodies.

Originality/value

It is found that the presence of non-linear thermal radiation and variable properties has more influence in heat transfer. Furthermore, temperature profile increases as the radiation parameter increases.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 May 2019

Polychronis Spyridon Dellis

Cavitation in piston-ring lubrication is studied as part of the performance of piston-ring assemblies. Cavitation degrades performance in engineering applications and its effect

Abstract

Purpose

Cavitation in piston-ring lubrication is studied as part of the performance of piston-ring assemblies. Cavitation degrades performance in engineering applications and its effect is that it alters the oil film pressure, generated at the converging-diverging wedge of the interface. Studies tried to shed light to the phenomenon of cavitation and compare it with cavities that have been identified in bearings. The paper aims to discuss this issue.

Design/methodology/approach

Lubricant formulations were used for parametric study of oil film thickness (OFT) and friction providing the OFT throughout the stroke and LIF for OFT point measurements. Lubricant formulation affects cavitation appearance and behaviour when fully developed.

Findings

Cavitation affects the ring load carrying capacity. Different forms of cavitation were identified and their shape and size (length and width) is dictated from reciprocating speed and viscosity of the lubricant. A clear picture is given from both techniques and friction results give quantifiable data in terms of the effect in wear and cavitation, depending on the lubricant properties.

Research limitations/implications

Engine results are limited due to manufacturing difficulties of visualisation windows and oil starvation. Therefore, full stroke length sized windows were not an option and motoring tests were implemented due to materials limitations (adhesive and quartz windows). Lubricant manufacturer has to give data regarding the chemistry of the lubricants.

Originality/value

The contribution of cavitation in piston-ring lubrication OFT, friction measurements and lubricant parameters that try to shed light to the different forms of cavitation. A link between viscosity, cavitation, shear thinning properties, OFT and friction is given.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 November 2018

Gangadhar Kotha, Keziya Kukkamalla and S.M. Ibrahim

The purpose of this paper is to examine the magneto hydrodynamic flow and heat transfer of nanofluids over a permeable wedge based on engine oil which is under the effects of…

Abstract

Purpose

The purpose of this paper is to examine the magneto hydrodynamic flow and heat transfer of nanofluids over a permeable wedge based on engine oil which is under the effects of thermal radiation and convective heating.

Design/methodology/approach

The equations governing the flow are transformed into differential equations by applying similarity transformations. Keller box method is used to bring out the numerical solution.

Findings

The discovery interprets that temperature as well as the velocity of Ag-engine oil nanofluids are more noticeable than Cu-engine oil nanofluids. Thermal boundary layer increases for radiation parameter as well as Biot number. Fluctuations of co-efficient of drag skin friction as well heat transfer rate at the wall are also tested.

Originality/value

Till now, no numerical studies are reported on the heat transfer enhancement of the permeable wedge under thermal radiation on engine oil nanofluid flow by considering convective heating.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 December 1957

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’…

Abstract

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’ of large clearance. Experiments involving flow visualization with very large clearance ratios of 0.05 to 0.3 show that the laminar regime gives way to cellular or ring vertices at the critical Reynolds number predicted by G. I. Taylor for concentric cylinders even in the presence of an axial flow and at a rather higher Reynolds number in the case of eccentric cylinders. The effect of the transition on the axial flow between the cylinders is small. The critical speed for transition as deduced by Taylor, is little affected by moderate axial flows and is increased by eccentricity. The effect of critical condition on the axial‐flow characteristics of the bearing system appears to be negligible, again for moderate axial flows. Assuming that the results can be extrapolated to clearances applicable to bearing operation, the main conclusion of this paper is that the breakdown of laminar flow, which is a practical possibility in very high‐speed bearings, is delayed by eccentric operation.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 3 January 2017

Umar Khan, Naveed Ahmed, Bandar Bin-Mohsen and Syed Tauseef Mohyud-Din

The purpose of this paper is to assess the flow of a nanofluid over a porous moving wedge. The passive control model along with the magnetohydrodynamic (MHD) effects is used to…

Abstract

Purpose

The purpose of this paper is to assess the flow of a nanofluid over a porous moving wedge. The passive control model along with the magnetohydrodynamic (MHD) effects is used to formulate the problem. Furthermore, in energy equation, the non-linear thermal radiation has also been incorporated. The equations governing the flow are transformed into a set of ordinary differential equations by using suitable similarity transforms. The reduced system of equations is then solved numerically using a well-known Runge–Kutta–Fehlberg method coupled with a shooting technique. The influence of parameters involved on velocity, temperature and concentration profiles is highlighted with the help of a graphical aid. Expressions for skin-friction coefficient, local Nusselt number and Sherwood number are obtained and presented graphically.

Design/methodology/approach

Numerical solution of the problem is obtained using the well-known Runge–Kutta–Fehlberg method.

Findings

The analysis provided gives a clear description that the increase in m and magnetic parameter M results in an increased velocity profile. Both these parameters normalize the velocity field. Radiation parameter, Rd, increases the temperature and concentration of the system so does the temperature ratio θω reduces the heat transfer rate at the wall for both stretching and shrinking wedge.

Originality/value

In the study presented, the flow of nanofluid over a moving permeable wedge is considered. The solution of the equations governing the flow is presented numerically. For the validity of results obtained, a comparison is also presented with already existing results. To the best of the authors’ knowledge, this investigation is the first of its kind on the said topic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2022

Shiqian Ni, Yanqin Zhang, Jiabao Li and Ye Wu

To solve the problem of oil film thinning when hydrostatic thrust bearings are overloaded or rotating at high speed, the dynamic pressure formed by tiny oil wedges is used to…

Abstract

Purpose

To solve the problem of oil film thinning when hydrostatic thrust bearings are overloaded or rotating at high speed, the dynamic pressure formed by tiny oil wedges is used to compensate, and the optimum height of oil wedges is determined by the compensation rate to improve the bearing capacity of hydrostatic thrust bearings.

Design/methodology/approach

This research method is aimed at the new type of double rectangular cavity static bearing with microbevel surface of q1-205. The wedge parameters of oil film were defined. The oil film lubrication performance of the bearing with the wedge parameters of 0, 0.02, 0.04, 0.06, 0.08 and 0.10 mm was simulated by the finite volume method, the comprehensive influence law of the wedge-shaped parameters on the vorticity and flow rate of the oil cavity pressure fluid was revealed. Finally, the oil cavity pressure changes of oil films with different wedge parameters under certain load and speed were tested by design experiments, and the theoretical analysis and simulation were verified.

Findings

This study found that the oil film wedge shape can well compensate the static pressure loss caused by the high-speed or heavy-duty operation of the bearing, but the dynamic pressure effect of the wedge shape does not always increase with the increase of the wedge height. The oil film exhibits superior lubrication performance in the range of 0.06–0.08 mm.

Originality/value

The original hydrostatic oil pad was designed as a microinclined plane, and the dynamic pressure caused by the microwedge of the oil pad was used to compensate the static pressure loss of the bearing. The lubrication performance of the oil film under the condition of varying viscosity was obtained by using the simulation method.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 525