Search results

1 – 10 of over 2000
Article
Publication date: 14 September 2023

Ruifeng Li and Wei Wu

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This…

102

Abstract

Purpose

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This paper aims to propose a collision-free following system for robot to track humans in corridors without a prior map.

Design/methodology/approach

In addition to following a target and avoiding collisions robustly, the proposed system calculates the positions of walls in the environment in real-time. This allows the system to maintain a stable tracking of the target even if it is obscured after turning. The proposed solution is integrated into a four-wheeled differential drive mobile robot to follow a target in a corridor environment in real-world.

Findings

The experimental results demonstrate that the robot equipped with the proposed system is capable of avoiding obstacles and following a human target robustly in the corridors. Moreover, the robot achieves a 90% success rate in maintaining a stable tracking of the target after the target turns around a corner with high speed.

Originality/value

This paper proposes a human target following system incorporating three novel features: a path planning method based on wall positions is introduced to ensure stable tracking of the target even when it is obscured due to target turns; improvements are made to the random sample consensus (RANSAC) algorithm, enhancing its accuracy in calculating wall positions. The system is integrated into a four-wheeled differential drive mobile robot effectively demonstrates its remarkable robustness and real-time performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 16 January 2024

Pengyue Guo, Tianyun Shi, Zhen Ma and Jing Wang

The paper aims to solve the problem of personnel intrusion identification within the limits of high-speed railways. It adopts the fusion method of millimeter wave radar and camera…

Abstract

Purpose

The paper aims to solve the problem of personnel intrusion identification within the limits of high-speed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy of object recognition in dark and harsh weather conditions.

Design/methodology/approach

This paper adopts the fusion strategy of radar and camera linkage to achieve focus amplification of long-distance targets and solves the problem of low illumination by laser light filling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm for multi-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposes a linkage and tracking fusion strategy to output the correct alarm results.

Findings

Simulated intrusion tests show that the proposed method can effectively detect human intrusion within 0–200 m during the day and night in sunny weather and can achieve more than 80% recognition accuracy for extreme severe weather conditions.

Originality/value

(1) The authors propose a personnel intrusion monitoring scheme based on the fusion of millimeter wave radar and camera, achieving all-weather intrusion monitoring; (2) The authors propose a new multi-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring under adverse weather conditions; (3) The authors have conducted a large number of innovative simulation experiments to verify the effectiveness of the method proposed in this article.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 September 2023

Kaushal Jani

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither…

19

Abstract

Purpose

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither supervised machine learning nor manual engineering are used in this work. Instead, the OTV educates itself without instruction from humans or labeling. Beyond its link to stopping distance and lateral mobility, choosing the right speed is crucial. One of the biggest problems with autonomous operations is accurate perception. Obstacle avoidance is typically the focus of perceptive technology. The vehicle's shock is nonetheless controlled by the terrain's roughness at high speeds. The precision needed to recognize difficult terrain is far higher than the accuracy needed to avoid obstacles.

Design/methodology/approach

Robots that can drive unattended in an unfamiliar environment should be used for the Orbital Transfer Vehicle (OTV) for the clearance of space debris. In recent years, OTV research has attracted more attention and revealed several insights for robot systems in various applications. Improvements to advanced assistance systems like lane departure warning and intelligent speed adaptation systems are eagerly sought after by the industry, particularly space enterprises. OTV serves as a research basis for advancements in machine learning, computer vision, sensor data fusion, path planning, decision making and intelligent autonomous behavior from a computer science perspective. In the framework of autonomous OTV, this study offers a few perceptual technologies for autonomous driving in this study.

Findings

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Originality/value

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Expert briefing
Publication date: 15 November 2023

The war is pushing innovation on both sides to the limit, forcing each to adapt and adopt the latest in military and civilian technologies. Swift advances have been made in the…

Article
Publication date: 9 January 2024

Kaizheng Zhang, Jian Di, Jiulong Wang, Xinghu Wang and Haibo Ji

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual…

Abstract

Purpose

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance.

Design/methodology/approach

The authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenét tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method.

Findings

The proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results.

Originality/value

Infeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 October 2023

Zhizhong Guo, Fei Liu, Yuze Shang, Zhe Li and Ping Qin

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance…

Abstract

Purpose

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance the longitudinal and lateral tracking accuracy of the vehicle.

Design/methodology/approach

In addressing the challenges posed by time-varying road information and vehicle dynamics parameters, a combination of model predictive control (MPC) and active disturbance rejection control (ADRC) is employed in this study. A coupled controller based on the authors’ model was developed by utilizing the capabilities of MPC and ADRC. Emphasis is placed on the ramifications of road undulations and changes in curvature concerning control effectiveness. Recognizing these factors as disturbances, measures are taken to offset their influences within the system. Load transfer due to variations in road parameters has been considered and integrated into the design of the authors’ synergistic architecture.

Findings

The framework's efficacy is validated through hardware-in-the-loop simulation. Experimental results show that the integrated controller is more robust than conventional MPC and PID controllers. Consequently, the integrated controller improves the vehicle's driving stability and safety.

Originality/value

The proposed coupled control strategy notably enhances vehicle stability and reduces slip concerns. A tailored model is introduced integrating a control strategy based on MPC and ADRC which takes into account vertical and longitudinal force variations and allowing it to effectively cope with complex scenarios and multifaceted constraints problems.

Open Access
Article
Publication date: 14 February 2023

Andreas Flanschger, Rafael Heinzelmann and Martin Messner

This paper examines the governance function that incubators perform for entrepreneurial firms. The authors demonstrate that this governance function has both a consultative and a…

1644

Abstract

Purpose

This paper examines the governance function that incubators perform for entrepreneurial firms. The authors demonstrate that this governance function has both a consultative and a control dimension and illustrate how these are enacted in the interactions between incubators and entrepreneurs. The authors also show how these interactions come into being and how entrepreneurs assess the value of the governance role played by incubators.

Design/methodology/approach

The paper is based on a cross-sectional interview study with entrepreneurs of 21 start-ups that were hosted by three different incubators. The start-ups are all early-stage technology firms. The analysis in the paper follows an inductive approach.

Findings

The authors find that the governance role of incubators is about both consultation and control. Consultative forms of governance include providing input and advice as well as questioning ideas and assumptions. Controlling forms of governance comprise setting targets and tracking progress as well as enforcing structures and documentation. The authors furthermore show that governance episodes are triggered either by the entrepreneurs themselves or by the incubator. In the former case, such episodes are mainly about consultation, while in the latter one, they often have a pronounced control element, which materializes particularly through regularly enforced meetings. Most entrepreneurs seem to appreciate this control element, acknowledging that, in its absence, they would lack the self-discipline of doing some things that need to be done.

Research limitations/implications

This study’s findings extend prior research on inter-organizational relationships and the types of governance mechanisms observed therein. The authors show that a strict separation between actors who offer consultation and those who exercise control is too simplistic. Incubators influence entrepreneurial firms both through consultative and controlling forms of governance. In terms of limitations, this study’s analysis focuses on the perspectives of entrepreneurs, and the authors did not include the perspectives of incubators nor did the authors directly observe meetings between these two parties.

Practical implications

This paper provides examples for how entrepreneurial firms can benefit from being part of an incubator.

Originality/value

This study contributes to the discussion of the governance of inter-organizational relationships by focusing on incubators. In so doing, the authors also complement extant literature on management control in entrepreneurial settings by showing how the incubator fulfills a control function for entrepreneurs before these implement control mechanisms themselves.

Details

Accounting, Auditing & Accountability Journal, vol. 36 no. 9
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 5 April 2024

Xiaoli Tang, Xiaolin Li and Zefeng Hao

Based on sensory marketing theory and cognitive appraisal theory, this study investigates whether and how the background visual complexity of live-streaming affects consumers'…

Abstract

Purpose

Based on sensory marketing theory and cognitive appraisal theory, this study investigates whether and how the background visual complexity of live-streaming affects consumers' purchase intention and reveals the underlying mechanisms through which background visual complexity influences consumers' purchase decisions.

Design/methodology/approach

The experiment was conducted with 180 college students, using eye-tracking technology to explore the impact mechanism of live background visual complexity on consumers' purchase intention, considering three types of background visual complexity (high vs medium vs low) and two levels of need for cognitive closure (high vs low).

Findings

Firstly, the background visual complexity of live-streaming positively influences consumers' purchase intention by eliciting positive emotions (pleasure and arousal), and the relationship between consumer emotions and purchase intention is nonlinear. Secondly, need for cognitive closure to significantly moderate the influence of background visual complexity on purchase intention.

Research limitations/implications

The limited sample size makes it difficult to generalize to other consumer groups. Also, the study only focuses on one visual factor, lacking comprehensive analysis from multiple perspectives.

Practical implications

It is recommended that live e-commerce companies optimize the visual design of live-streaming backgrounds and identify consumer traits to match the visual complexity with consumers' level of need for cognitive closure, thereby stimulating positive emotions and facilitating more satisfactory shopping decisions.

Originality/value

This paper addresses an interesting and practical issue related to the effects of live background visual complexity on consumers' purchase intention.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of over 2000