Search results

1 – 2 of 2
Article
Publication date: 3 June 2019

Bilal Hawashin, Shadi Alzubi, Tarek Kanan and Ayman Mansour

This paper aims to propose a new efficient semantic recommender method for Arabic content.

Abstract

Purpose

This paper aims to propose a new efficient semantic recommender method for Arabic content.

Design/methodology/approach

Three semantic similarities were proposed to be integrated with the recommender system to improve its ability to recommend based on the semantic aspect. The proposed similarities are CHI-based semantic similarity, singular value decomposition (SVD)-based semantic similarity and Arabic WordNet-based semantic similarity. These similarities were compared with the existing similarities used by recommender systems from the literature.

Findings

Experiments show that the proposed semantic method using CHI-based similarity and using SVD-based similarity are more efficient than the existing methods on Arabic text in term of accuracy and execution time.

Originality/value

Although many previous works proposed recommender system methods for English text, very few works concentrated on Arabic Text. The field of Arabic Recommender Systems is largely understudied in the literature. Aside from this, there is a vital need to consider the semantic relationships behind user preferences to improve the accuracy of the recommendations. The contributions of this work are the following. First, as many recommender methods were proposed for English text and have never been tested on Arabic text, this work compares the performance of these widely used methods on Arabic text. Second, it proposes a novel semantic recommender method for Arabic text. As this method uses semantic similarity, three novel base semantic similarities were proposed and evaluated. Third, this work would direct the attention to more studies in this understudied topic in the literature.

Article
Publication date: 2 March 2023

Kareem Mostafa, Tarek Hegazy, Robert D. Hunsperger and Stepanka Elias

This paper aims to use convolutional neural networks (CNNs) to provide an objective approach to classify deteriorated building assets according to the type and extent of damage…

Abstract

Purpose

This paper aims to use convolutional neural networks (CNNs) to provide an objective approach to classify deteriorated building assets according to the type and extent of damage. This research supports automated inspection of buildings and focuses on roofing elements as one of the most critical and externally distressed elements in buildings.

Design/methodology/approach

In this paper, 5,000+ images of deteriorated roofs from several buildings were collected to design a CNN system that automatically identifies and sizes roofing defects. Experimenting with different CNN formulations, the best accuracy is achieved using two-stage CNNs. The first-stage CNN classifies images into defect/no defect, while the second stage classifies the defected images according to the damage type. Based on the image classification, optimization is used to prioritize roof repairs by maximizing the return from limited rehabilitation funds.

Findings

The developed CNNs reached 95% and 97% accuracy for the first and second phases, respectively, which is higher than achieved in previous literature efforts. Using the proposed model to automate inspection and condition assessment activities proved to be faster than conventional methods. Repair/replace strategy for a case study of 21 campus buildings based on their condition and budgetary constraints was suggested.

Research limitations/implications

Future research includes testing different data acquisition technologies (e.g. infrared imaging), performing severity-based classification and integrating with BIM for defect localization.

Originality/value

This study provides an objective approach to automate asset condition assessment and improve funding decisions using a combination of image analysis and optimization techniques. The proposed approach is applicable toward other asset types and components.

1 – 2 of 2