Search results

1 – 10 of over 3000
Article
Publication date: 1 June 2022

Fatimah De'nan, Nor Salwani Hashim and Xing Yong Sua

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums…

Abstract

Purpose

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums, factories and high rise buildings. This paper aims to present the study of structural behaviour and efficiency of tapered steel section with elliptical perforation under shear loading conditions.

Design/methodology/approach

The effect of various elliptical perforation configurations such as tapering ratio, perforation size, perforation orientation and perforation layout on the shear behaviour of tapered steel section has been investigated by using finite element method. A total of 112 models are simulated via LUSAS software.

Findings

It has been found that the most efficient model is the tapered steel section with tapering ratio of 0.3 and vertical elliptical perforation of 0.2 times the section depths which are arranged in Layout 3. The most efficient model has a shear efficiency of 1,094.35 kN, which is 4.12% less than the tapered steel section without perforation, but it could achieve a 0.32% of weight reduction.

Originality/value

The smaller tapering ratio and perforation size contributed to the higher shear buckling capacity and efficiency for the elliptical perforated tapered steel section.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 September 2020

Muhamad Ramdzan Buyong, Farhad Larki, Muhamad Ikhmal Hakimi Zainal, Abdelaziz Yousif Ahmed Almahi, Ahmad Ghadafi Ismail, Azrul Azlan Hamzah, Aminuddin Ahmad Kayani Kayani, Céline Elie Caille and Burhanuddin Yeop Majlis

This paper aims to present the capacitance characterization of tapered dielectrophoresis (DEP) microelectrodes as micro-electro-mechanical system sensor and actuator device. The…

Abstract

Purpose

This paper aims to present the capacitance characterization of tapered dielectrophoresis (DEP) microelectrodes as micro-electro-mechanical system sensor and actuator device. The application of DEP-on-a-chip (DOC) can be used to evaluate and correlate the capacitive sensing measurement at an actual position and end station of liquid suspended targeted particles by DEP force actuator manipulation.

Design/methodology/approach

The capability of both, sensing and manipulation was analysed based on capacitance changes corresponding to the particle positioning and stationing of the targeted particles at regions of interest. The mechanisms of DEP sensor and actuator, designed in DOC applications were energized by electric field of tapered DEP microelectrodes. The actual DEP forces behaviour has been also studied via quantitative analysis of capacitance measurement value and its correlation with qualitative analysis of positioning and stationing of targeted particles.

Findings

The significance of the present work is the ability of using tapered DEP microelectrodes in a closed mode system to simultaneously sense and vary the magnitude of manipulation.

Originality/value

The integration of DOC platform for contactless electrical-driven with selective detection and rapid manipulation can provide better efficiency in in situ selective biosensors or bio-detection and rapid bio-manipulation for DOC diagnostic and prognostic devices.

Details

Microelectronics International, vol. 37 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 16 July 2021

Fatimah De’nan, Nor Salwani Hashim, Xing Yong Sua and Pui Yee Lock

Due to economic development, tapered members are commonly applied in steel frames, namely, industrial halls, warehouses, exhibition centres, etc. In the design of cantilever steel…

Abstract

Purpose

Due to economic development, tapered members are commonly applied in steel frames, namely, industrial halls, warehouses, exhibition centres, etc. In the design of cantilever steel beam structures in cities building design, tapering is introduced at the web profile to achieve utmost economy and suit the bending moment distributions. The cross-sectional shape of the beam is varied linearly to the moment gradient to achieve the target of higher efficiency with lower cost.

Design/methodology/approach

The shear deformation pattern and efficiency of the tapered steel section with perforation were investigated using finite element analysis. In addition, I-beam with web opening is studied numerically via LUSAS software for different parameters of tapering ratio, perforation shape and perforation size and perforation layout.

Findings

The highest contributing parameters for the highest shear buckling capacity and efficiency of the section were due to the small opening size and tapering ratio. Whilst the variation of perforation layout and spacing give a major effect on the shear strength and efficiency of the tapered steel section with perforation. Besides that, the highest efficiency model is found when the section is designed with 0.4 D diamond perforation in Layout 3 under a tapering ratio of 0.3. The critical shear buckling load and efficiency is reduced 14.39% and 13.91%, respectively, when perforations are added onto the tapered steel sections.

Originality/value

The tapered steel section with perforation has lower critical shear buckling load and efficiency compared to the tapered section without perforation but obtains a higher critical shear buckling load and efficiency compared to the uniform section without perforation.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 September 2020

Fatimah De'nan, Nor Salwani Hashim and Lim Cheng Kuan

Tapered section can resist maximum stress at a single location while the stresses are considerably lower at the rest of the member; therefore, it could have higher structural…

Abstract

Purpose

Tapered section can resist maximum stress at a single location while the stresses are considerably lower at the rest of the member; therefore, it could have higher structural efficiency compared to conventional section. It could also satisfy functional requirements while reducing weight and cost in many fields of civil construction. Perforation in the steel section also eases the integration of Mechanical and Electrical (M&E) services such as ventilation pipes and electrical cables within the structural depths of the beam. In this analysis, the structural efficiency of tapered steel section with perforation under lateral-torsional buckling behaviour is investigated.

Design/methodology/approach

A total of 81 models are analysed using LUSAS software and five variables are investigated which involved perforation sizes, perforation shapes, perforation layout, tapering ratio and flange and Web thickness. Buckling moment is obtained from the analysis results in LUSAS software, while self-weight and structural efficiency are manually calculated.

Findings

Perforation size of 0.75 D has the highest structural efficiency, although it can withstand a smaller buckling load. This is due to its lower self-weight compared to other perforation sizes. The square perforation shape also has the highest structural efficiency compared to circular perforation and diamond perforation. An increment of percentage in structural efficiency of the square perforation shape with 0.75 D is the highest at 3.07%. The circular perforation shape with 0.75 D (Open-Open-Open perforation layout) has the highest increment of percentage in structural efficiency which is 2.37%. The tapering ratio of 0.3 is the most efficient and an increment of percentage in structural efficiency is 114.36%. The flange thickness of 0.02 m and Web thickness of 0.015 m has the highest structural efficiency at 45.756 and 29.171, respectively.

Originality/value

In conclusion, a section should be able to resist the large buckling moment and has a lower self-weight to achieve high structural efficiency.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 June 2021

Hongyu Duan, Qingtao Yu and Zhijian Wang

The purpose of this paper is to study the film-forming capacity of logarithmic crowned roller for tapered roller bearing (TRB) and to design a tapered roller profile based on an…

Abstract

Purpose

The purpose of this paper is to study the film-forming capacity of logarithmic crowned roller for tapered roller bearing (TRB) and to design a tapered roller profile based on an elastohydrodynamic lubrication model.

Design/methodology/approach

A coupled model, incorporating a quasi-static model of TRBs and an elastohydrodynamic lubrication model was developed to investigate the load distribution of TRB and to evaluate the lubrication state of tapered roller/raceway contact.

Findings

The model is verified with published literature results. Parametric analysis is conducted to investigate the effect of crown drop on azimuthal load distribution of the roller, film thickness and pressure distribution in the contact area. The result shows that crown drop has little influence on the azimuthal load distribution; also, the film thickness and the pressure distribution are asymmetric. When the tapered roller is designed and manufactured, the crown drop of the small end should be larger than that in the large end.

Originality/value

Precise roller profile design is conducive to improve the fatigue life of TRBs. Currently, most crown design methods neglect the influence of lubrication, which can lead to a non-suitable roller profile. Therefore, the present work is undertaken to optimize roller profiles based on lubrication theory.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2023

Berkay Ergene, Gökmen Atlıhan and Ahmet Murat Pinar

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and…

Abstract

Purpose

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and geometrical property as tapered angle (0, 0.25 and 0.50) on vibrational behavior of 3D-printed polyethylene terephthalate glycol (PET-G) tapered beams with fused filament fabrication (FFF) method.

Design/methodology/approach

In this performance, all test specimens were modeled in AutoCAD 2020 software and then 3D-printed by FFF. The effects of printing parameters on the natural frequencies of 3D-printed PET-G beams with different tapered angles were also analyzed experimentally, and numerically (finite element analysis) via Ansys APDL 16 program. In addition to vibrational properties, tensile strength, elasticity modulus, hardness, and surface roughness of the 3D-printed PET-G parts were examined.

Findings

It can be stated that average surface roughness values ranged between 1.63 and 6.91 µm. In addition, the highest and lowest hardness values were found as 68.6 and 58.4 Shore D. Tensile strength and elasticity modulus increased with the increase of infill rate and decrease of the layer height. In conclusion, natural frequency of the 3D-printed PET-G beams went up with higher infill rate values though no critical change was observed for layer height and a change in tapered angle fluctuated the natural frequency values significantly.

Research limitations/implications

The influence of printing parameters on the vibrational properties of 3D-printed PET-G beams with different tapered angles was carried out and the determination of these effects is quite important. On the other hand, with the addition of glass or carbon fiber reinforcements to the PET-G filaments, the material and vibrational properties of the parts can be examined in future works.

Practical implications

As a result of this study, it was shown that natural frequencies of the 3D-printed tapered beams from PET-G material can be predicted via finite element analysis after obtaining material data with the help of mechanical/physical tests. In addition, the outcome of this study can be used as a reference during the design of parts that are subjected to vibration such as turbine blades, drone arms, propellers, orthopedic implants, scaffolds and gears.

Social implications

It is believed that determination of the effect of the most used 3D printing parameters (layer height and infill rate) and geometrical property of tapered angle on natural frequencies of the 3D-printed parts will be very useful for researchers and engineers; especially when the importance of resonance is known well.

Originality/value

When the literature efforts are scanned in depth, it can be seen that there are many studies about mechanical or wear properties of the 3D-printed parts. However, this is the first study which focuses on the influences of the both 3D printing parameters and tapered angles on the vibrational behaviors of the tapered PET-G beams produced with material extrusion based FFF method. In addition, obtained experimental results were also supported with the performed finite element analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 July 2019

Yuzhen Zhao, Wei Liu, Qing Guo and Zijun Zhang

The purpose of this paper is to study the resonance failure sensitivity analysis of straight-tapered assembled pipe conveying nonuniform axial fluid by an active learning Kriging…

Abstract

Purpose

The purpose of this paper is to study the resonance failure sensitivity analysis of straight-tapered assembled pipe conveying nonuniform axial fluid by an active learning Kriging (ALK) method.

Design/methodology/approach

In this study, first, the motion equation of straight-tapered assembled pipe conveying nonuniform fluid is built. Second, the Galerkin method is used for calculating the natural frequency of assembled pipe conveying nonuniform fluid. Third, the ALK method based on expected risk function (ERF) is used to calculate the resonance failure probability and moment independent global sensitivity analysis.

Findings

The findings of this paper highlight that the eigenfrequency and critical velocity of uniform fluid-conveying pipe are less than the reality and the error is biggest in first-order natural frequency. The importance ranking of input variables affecting the resonance failure can be obtained. The importance ranking is different for a different velocity and mode number. By reducing the uncertainty of variables with a high index, the resonance failure probability can be reduced maximally.

Research limitations/implications

There are no experiments on the eigenfrequency and critical velocity. There is no experiments about natural frequency and critical velocity of straight tapered assembled pipe to verify the theory in this paper.

Originality/value

The originality of this paper lies as follows: the motion equation of straight-tapered pipe conveying nonuniform fluid is first obtained. The eigenfrequency of nonuniform fluid and uniform fluid inside the assembled pipe are compared. The resonance reliability analysis of straight-tapered assembled pipe is first proposed. From the results, it is observed that the resonance failure probability can be reduced efficiently.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 2019

Zheng Chen, Haitao Zhao, Xiaowang Li and Ji’an Chen

The purpose of this paper is to analyse the deflection of the flexible airship structure in a new way which can decrease the calculation amount and improve the calculation speed.

202

Abstract

Purpose

The purpose of this paper is to analyse the deflection of the flexible airship structure in a new way which can decrease the calculation amount and improve the calculation speed.

Design/methodology/approach

Infinitesimal method and tapered inflatable beam theory are combined to study the mechanics characteristics of the airship. Firstly, infinitesimal method is introduced into the airship structure analysis. The airship structure can be divided into several tapered inflatable beam elements. Then, tapered inflatable beam theory is improved and a developed model of the tapered inflatable beam under bending moment is presented. Besides, it is proved that deflection caused by pure load and pure moment can be linearly superimposed. Finally, the deflection of the airship structure is studied by means of tapered inflatable beam theory.

Findings

This paper improved the tapered inflatable beam theory. Besides, the proposed method for deflection analysis of the flexible airship in this paper can reach the same accuracy with traditional finite element method (FEM). However, the number of beam elements is much less than the one of FEM shell elements, which will decrease the calculation amount much and improve the calculation speed.

Practical implications

The flexible airship is a new and developing research area in engineering practice. The proposed method in this paper provides one precise and high-speed way to analyse the deformation of the airship.

Originality/value

The paper draws its value from the contributions to development of inflatable structure and the flexible airship mechanics research.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 August 2014

M. Batumalay, A. Lokman, H.A. Rahman, S.W. Harun and H. Ahmad

This paper aims to propose and demonstrate a simple fiber optic sensor using a tapered plastic multimode fiber as a probe for measurement of calcium nitrate concentrations in…

Abstract

Purpose

This paper aims to propose and demonstrate a simple fiber optic sensor using a tapered plastic multimode fiber as a probe for measurement of calcium nitrate concentrations in de-ionized water.

Design/methodology/approach

The working mechanism is based on the observed increment in the transmission of the sensor that is immersed in calcium nitrate solution of higher concentration. The tapering of the plastic fiber is carried out by etching method using acetone, sand paper and de-ionized water.

Findings

Tapered fiber with diameter 0.45 mm gives the highest sensitivity of 0.028 mV/% due to better interaction between the evanescent field and the calcium nitrate solution with a good slope linearity of more than 98 per cent for a 1.07 per cent limit of detection in a straight probe arrangement. The use of calcium and nitrate ions within the sensing medium demonstrates the strong dependency of the sensor output trend on the electrolytic nature of the chemical solutions.

Originality/value

Demonstration of tapered plastic multimode fiber sensor probe for measurement electrolytic chemical solutions.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Malathy Batumalay, F. Ahmad, Asiah Lokman, A.A. Jasim, Sulaiman Wadi Harun and H. Ahmad

A simple tapered plastic optical fiber (POF) sensor is proposed and demonstrated for measurement of uric acid concentrations in de-ionized water. The paper aims to discuss these…

Abstract

Purpose

A simple tapered plastic optical fiber (POF) sensor is proposed and demonstrated for measurement of uric acid concentrations in de-ionized water. The paper aims to discuss these issues.

Design/methodology/approach

The sensor operates based on intensity modulation technique as the tapered POF probe which was coated by a single walled carbon nonotubes polyethylene oxide (SWCNT-PEO) composite is immersed into the uric acid solution. The probe was fabricated using an etching method and has a waist diameter of 0.46 mm and tapering length of 10 mm.

Findings

As the concentration varies from 0 to 500 ppm, the output voltage of the sensor increases linearly from 6.13 to 7.35 mV with a sensitivity of 0.0023 mV/% and a linearity of more than 97.20 percent. The SWCNT-PEO composite coating increases the sensitivity of the proposed sensor due to the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber.

Originality/value

This is the first demonstration of the tapered POF sensor for measurement of uric acid concentrations in de-ionized water.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 3000