Search results

1 – 10 of 179
Article
Publication date: 17 May 2023

Fatimah De’nan, Nor Salwani Hashim and Mohd Yusri Mohamad Razak

Tapered steel sections are widely used in house building design due to their structural efficiency and aesthetic appearance. Due to the practical usage of web tapering…

Abstract

Purpose

Tapered steel sections are widely used in house building design due to their structural efficiency and aesthetic appearance. Due to the practical usage of web tapering specifications in the metal building industry, fabrication and material expenses are analyzed to achieve geometric and economic productivity. The purpose of this study is to investigate the effectiveness of utilizing web profiles with openings in reducing the weight of steel beams.

Design/methodology/approach

In this paper, the nonlinear analysis of the bending behavior of a tapered steel section with an opening was studied by finite element analysis. The results were then compared with those of the tapered steel section without an opening in terms of displacement and yield moment.

Findings

The bending capacity of a tapered steel section was analyzed using finite element analysis. Results showed that the tapered steel section without openings had a higher bending capacity compared to the section with various sizes of web openings. The results also showed that decreasing the number of openings would increase the bending capacity, whereas increasing the size of the opening would decrease it. The difference in the yield moment between the tapered steel section with and without openings was only 15.818%. A total of 60 nonlinear analyses were conducted to investigate the effect of the number and size of web openings, flange thickness and web thickness on the bending behavior. However, this study showed that web opening with octagon shape and 0.6D size of web opening, where D is the depth of section, showed the best section in terms of yield moment and volume reduction compared to other opening size and shape.

Originality/value

It is also found that tapered steel section has better moment resistance in thicker flange and web. The study is valuable for engineers and designers who work with steel structures and need to optimize the performance of tapered steel sections with web openings.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 April 2023

Fatimah De’nan, Nor Salwani Hashim and Ngo Siew Ting

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high…

Abstract

Purpose

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high strength to weight ratio properties. However, the rise on the price of steel section should be more emphasized; therefore, the optimization in steel section design is needed to overcome the issue of material cost. As such, tapered steel sections save on material use, while the introduction of web openings allows the placement of mechanical and electrical services, plumbing and also aesthetic design considerations.

Design/methodology/approach

The purpose of this study is to investigate the lateral torsional buckling behavior of a tapered steel section with an ellipse-shaped opening by analyzing its structural parameters. To achieve this, the finite element analysis (FEA) of the section is modeled using LUSAS software, which allows for a detailed analysis of the section's behavior under varying loads and conditions. It involves the variation in web opening size, opening layout, opening rotation angle and the tapering ratio. Eigenvalue buckling analysis is adopted to know the parametric effects of each 108 model. The size of opening varies from 0.2 to 0.5 d of the total depth where the opening located. There are three type of layouts applied in this study, which are the layouts A, B and C. There are three types of rotation angles for the ellipse-shaped opening, including the non-rotated vertical opening and two additional types formed by rotating the opening 45 degrees clockwise and counterclockwise around the center-point of the ellipse. A fixed-free boundary condition was applied, resulting in a simulation of a cantilever beam. The models are fixed at one end with a larger depth, and free at the other end with a smaller depth. Loading condition is an application of 10 kN/m uniform distributed load in the direction of gravity along the mid-span of the top flange.

Findings

It is observed that the model 82 with Layout A, tapering ratio 0.3, opening size 0.5 d and opening rotated in 45 degree anti-clockwise direction results in the highest structural efficiency among the 108 models. Therefore, the buckling moment of model 82 is 1,013.08 kNm with structural efficiency of 481.26, which shows an increase of 3.17% compared to the controlled model.

Originality/value

The FEA results shows a significant increase in ductility and stiffness of the tapered steel section with elipse shape opening and consequently changes in the behaviour of yield point.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2022

Fatimah De'nan, Nor Salwani Hashim and Xing Yong Sua

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums…

Abstract

Purpose

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums, factories and high rise buildings. This paper aims to present the study of structural behaviour and efficiency of tapered steel section with elliptical perforation under shear loading conditions.

Design/methodology/approach

The effect of various elliptical perforation configurations such as tapering ratio, perforation size, perforation orientation and perforation layout on the shear behaviour of tapered steel section has been investigated by using finite element method. A total of 112 models are simulated via LUSAS software.

Findings

It has been found that the most efficient model is the tapered steel section with tapering ratio of 0.3 and vertical elliptical perforation of 0.2 times the section depths which are arranged in Layout 3. The most efficient model has a shear efficiency of 1,094.35 kN, which is 4.12% less than the tapered steel section without perforation, but it could achieve a 0.32% of weight reduction.

Originality/value

The smaller tapering ratio and perforation size contributed to the higher shear buckling capacity and efficiency for the elliptical perforated tapered steel section.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 May 2023

Berkay Ergene, Gökmen Atlıhan and Ahmet Murat Pinar

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and…

Abstract

Purpose

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and geometrical property as tapered angle (0, 0.25 and 0.50) on vibrational behavior of 3D-printed polyethylene terephthalate glycol (PET-G) tapered beams with fused filament fabrication (FFF) method.

Design/methodology/approach

In this performance, all test specimens were modeled in AutoCAD 2020 software and then 3D-printed by FFF. The effects of printing parameters on the natural frequencies of 3D-printed PET-G beams with different tapered angles were also analyzed experimentally, and numerically (finite element analysis) via Ansys APDL 16 program. In addition to vibrational properties, tensile strength, elasticity modulus, hardness, and surface roughness of the 3D-printed PET-G parts were examined.

Findings

It can be stated that average surface roughness values ranged between 1.63 and 6.91 µm. In addition, the highest and lowest hardness values were found as 68.6 and 58.4 Shore D. Tensile strength and elasticity modulus increased with the increase of infill rate and decrease of the layer height. In conclusion, natural frequency of the 3D-printed PET-G beams went up with higher infill rate values though no critical change was observed for layer height and a change in tapered angle fluctuated the natural frequency values significantly.

Research limitations/implications

The influence of printing parameters on the vibrational properties of 3D-printed PET-G beams with different tapered angles was carried out and the determination of these effects is quite important. On the other hand, with the addition of glass or carbon fiber reinforcements to the PET-G filaments, the material and vibrational properties of the parts can be examined in future works.

Practical implications

As a result of this study, it was shown that natural frequencies of the 3D-printed tapered beams from PET-G material can be predicted via finite element analysis after obtaining material data with the help of mechanical/physical tests. In addition, the outcome of this study can be used as a reference during the design of parts that are subjected to vibration such as turbine blades, drone arms, propellers, orthopedic implants, scaffolds and gears.

Social implications

It is believed that determination of the effect of the most used 3D printing parameters (layer height and infill rate) and geometrical property of tapered angle on natural frequencies of the 3D-printed parts will be very useful for researchers and engineers; especially when the importance of resonance is known well.

Originality/value

When the literature efforts are scanned in depth, it can be seen that there are many studies about mechanical or wear properties of the 3D-printed parts. However, this is the first study which focuses on the influences of the both 3D printing parameters and tapered angles on the vibrational behaviors of the tapered PET-G beams produced with material extrusion based FFF method. In addition, obtained experimental results were also supported with the performed finite element analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2023

A. Tamilarasan, A. Renugambal and K. Shunmugesh

The goal of this study is to determine the values of the process parameters that should be used during the machining of ceramic tile using the abrasive water jet (AWJ) process in…

Abstract

Purpose

The goal of this study is to determine the values of the process parameters that should be used during the machining of ceramic tile using the abrasive water jet (AWJ) process in order to achieve the lowest possible values for surface roughness and kerf taper angle.

Design/methodology/approach

In the present work, ceramic tile is processed by the AWJ process and experimental data were recorded using the RSM approach based Box–Behnken design matrix. The input process factors were water jet pressure, jet traverse speed, abrasive flow rate and standoff distance, to determine the surface roughness and kerf taper angle. ANOVA was used to check the adequacy of model and significance of process parameters. Further, the elite opposition-based learning grasshopper optimization (EOBL-GOA) algorithm was implemented to identify the simultaneous optimization of multiple responses of surface roughness and kerf taper angle in AWJ.

Findings

The suggested EOBL-GOA algorithm is suitable for AWJ of ceramic tile, as evidenced by the error rate of ±2 percent between experimental and predicted solutions. The surfaces were evaluated with an SEM to assess the quality of the surface generated with the optimal settings. As compared with initial setting of the SEM image, it was noticed that the bottom cut surface was nearly smooth, with less cracks, striations and pits in the improved optimal results of the SEM image. The results of the analysis can be used to control machining parameters and increase the accuracy of AWJed components.

Originality/value

The findings of this study present an innovative method for assessing the characteristics of the nontraditional machining processes that are most suited for use in industrial and commercial applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 August 2023

Md Azlin Md Said, Fatimah De’nan, Nor Salwani Hashim, Bong Wely and Chuah Hoi Ching

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically…

Abstract

Purpose

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically, the study focuses on the optimization of tapered members for pre-engineered steel structures, aligning with Eurocode 3 standards. By emphasizing the effectiveness of material utilization in construction, this research aims to enhance the structural performance and safety of buildings. Moreover, it recognizes the pivotal role played by such advancements in promoting economic growth through the reduction of material waste, optimization of cost-efficiency and support for sustainable construction practices.

Design/methodology/approach

Structural performance at initial analysis and final analysis of the selected critical frame were carried out using Dlubal RSTAB 8.18. The structural frame stability and sway imperfections were checked based on MS EN1993-1-1:2005 (EC3). To assess the structural stability of the portal frame using MS EN 1993-1-1:2005 (EC3), cross-sectional resistance and member buckling resistance were verified based on Clause 6.2.4 – Compression, Clause 6.2.5 – Bending Moment, Clause 6.2.6 – Shear, Clause 6.2.8 – Bending and Shear, Clause 6.2.9 – Bending and Axial Force and Clause 6.3.4 – General Method for Lateral and Lateral Torsional Buckling of Structural Components.

Findings

In this study, the cross sections of the web-tapered rafter and column were classified under Class 4. These involved the consideration of elastic shear resistance and effective area on the critical steel sections. The application of the General Method on the verification of the resistance to lateral and lateral torsional buckling for structural components required the extraction of some parameters using structural analysis software. From the results, there was only 5.90% of mass difference compared with the previous case study.

Originality/value

By classifying the web-tapered cross sections of the rafter and column under Class 4, the study accounts for important factors such as elastic shear resistance and effective area on critical steel sections.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 November 2023

Sezer Çoban

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain…

Abstract

Purpose

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain parameters (i.e. wing taper ratio and wing aspect ratio) while there are lower and upper constraints on these redesign parameters.

Design/methodology/approach

A mini UAV is produced in the Iskenderun Technical University (ISTE) Unmanned Aerial Vehicle Laboratory. Its complete wing can vary passively before the flight with respect to the result of the stochastic redesign of the wing while maximizing autonomous flight performance. Flight control system (FCS) parameters (i.e. gains of longitudinal and lateral proportional-integral-derivative controllers) and wing redesign parameters mentioned before are simultaneously designed to maximize autonomous flight performance index using a certain stochastic optimization strategy named as simultaneous perturbation stochastic approximation (SPSA). Found results are used while composing UAV flight simulations.

Findings

Using stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV over previously mentioned wing parameters and FCS, it obtained a maximum UAV autonomous flight performance.

Research limitations/implications

Permission of the directorate general of civil aviation in the Republic of Türkiye is essential for real-time UAV autonomous flights.

Practical implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach is very useful for improving any mini UAV autonomous flight performance cost index.

Social implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach succeeds confidence, highly improved autonomous flight performance cost index and easy service demands of mini UAV operators.

Originality/value

Creating a new approach to recover autonomous flight performance cost index (e.g. satisfying less settling time and less rise time, less overshoot during flight trajectory tracking) of a mini UAV and composing a novel procedure performing simultaneous mini UAV having passively morphing wing over certain parameters while there are upper and lower constraints and FCS design idea.

Article
Publication date: 31 July 2023

Safia Akram, Maria Athar, Khalid Saeed, Mir Yasir Umair and Taseer Muhammad

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced…

Abstract

Purpose

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced magnetic field in a tapered channel is examined. The study of propulsion system is on the rise in aerospace research. In spacecraft technology, the propulsion system uses high-temperature heat transmission governed through thermal radiation process. This study will help in assessment of chyme movement in the gastrointestinal tract and also in regulating the intensity of magnetic field of the blood flow during surgery.

Design/methodology/approach

The brief mathematical modelling, along with induced magnetic field, of Williamson nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Numerical technique is manipulated to solve the highly nonlinear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial-induced magnetic field, magnetic force function, stream functions, pressure rise and pressure gradient.

Findings

The key finding from the analysis above can be summed up as follows: the temperature profile decreases and concentration profile increases due to the rising impact of thermal radiation. Brownian motion parameter has a reducing influence on nanoparticle concentration due to massive transfer of nanoparticles from a hot zone to a cool region, which causes a decrease in concentration profile· The pressure rise enhances due to rising values of thermophoresis and thermal Grashof number in retrograde pumping, free pumping and copumping region.

Originality/value

To the best of the authors’ knowledge, a study that integrates double-diffusion convection with thermal radiation, viscous dissipation and induced magnetic field on peristaltic flow of Williamson nanofluid with a channel that is asymmetric has not been carried out so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 December 2022

Ravinder Kumar and Sahendra Pal Sharma

This experimental study aims to deal with the improvement of process performance of electric discharge drilling (EDD) for fabricating true blind holes in titanium alloy Ti6Al4V…

Abstract

Purpose

This experimental study aims to deal with the improvement of process performance of electric discharge drilling (EDD) for fabricating true blind holes in titanium alloy Ti6Al4V. Micro EDD was performed on Ti6Al4V and blind holes were drilled into the workpiece.

Design/methodology/approach

The effects of input parameters (i.e. voltage, capacitance and spindle speed) on responses (i.e. material removal rate, tool wear rate and surface roughness [SR]) were evaluated through response surface methodology. The data was analyzed using analysis of variance and multi-optimization was performed for the optimized set of parameters. The optimized process parameters were then used to drill deeper blind holes.

Findings

Blind holes have few characteristics such as SR, taper angle and corner radius. The value of corner radius reflects the quality of the hole produced as well as the amount of tool roundness. The optimized process parameters suggested by the current experimental study lower down the response values (i.e. SR, taper angle and corner radius). The process is found very effective in producing finished blind holes.

Originality/value

This experimental study establishes EDD as a feasible process for the fabrication of truly blind holes in Ti6Al4V.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 179