Search results

1 – 10 of over 3000
Article
Publication date: 9 December 2021

Sifeng Liu, Tao Liu, Wenfeng Yuan and Yingjie Yang

The purpose of this paper is to solve the dilemma in the process of major selection decision-making.

Abstract

Purpose

The purpose of this paper is to solve the dilemma in the process of major selection decision-making.

Design/methodology/approach

Firstly, the group of weight vector with kernel has been defined. Then, the weighted comprehensive clustering coefficient vector was calculated based on the group of weight vector with kernel. Under the action of weighted comprehensive clustering coefficient vector, the information including in other components around component k and supporting object i to be classified into the k-th category has been gathered to component k. At last, a novel two-stage decision model based on the group of weight vector with kernel and the weighted comprehensive clustering coefficient vector is put forward to solve the dilemma in grey clustering evaluation. Then the overall evaluation conclusion can be consistent with the clustering result according to the rule of maximum value.

Findings

A new way to solve the dilemma in the process of major selection decision-making has been found. People can obtain a consistent result with two-stage decision model at the case of dilemma. That is, the conclusion of the overall evaluation is consistent with the clustering result according to the rule of maximum value.

Practical implications

Several functional groups of weight vector with kernel have been put forward. The proposed model can solve the clustering dilemma effectively and produce consistent results. A practical application of decision problem to solve the dilemma in supplier evaluation and selection of a key component of large commercial aircraft C919 have been completed by the novel two-stage decision model.

Originality/value

The two-stage decision model, the group of weight vector with kernel and the weighted comprehensive clustering coefficient vector were presented in this paper firstly. People can solve the dilemma in grey clustering evaluation effectively by the novel two-stage decision model based on the group of weight vector with kernel and the weighted comprehensive clustering coefficient vector.

Article
Publication date: 16 August 2021

Zhiguang Cheng, Behzad Forghani, Zhenbin Du, Lanrong Liu, Yongjian Li, Xiaojun Zhao, Tao Liu, Linfeng Cai, Weiming Zhang, Meilin Lu, Yakun Tian and Yating Li

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside…

127

Abstract

Purpose

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside magnetic and non-magnetic components under harmonics-direct current (HDC) hybrid excitations. As a new member-set (P21e) of the testing electromagnetic analysis methods Problem 21 Family, the focus is on efficient analysis methods and accurate material property modeling under complex excitations.

Design/methodology/approach

This P21e-based benchmarking covers the design of new benchmark models with magnetic flux compensation, the establishment of a new benchmark measurement system with HDC hybrid excitation, the formulation of the testing program (such as defined Cases I–V) and the measurement and prediction of material properties under HDC hybrid excitations, to test electromagnetic analysis methods and finite element (FE) computation models and investigate the electromagnetic behavior of typical magnetic and electromagnetic shields in electrical equipment.

Findings

The updated Problem 21 Family (V.2021) can now be used to investigate and validate the total power loss and the different shielding performance of magnetic and electromagnetic shields under various HDC hybrid excitations, including the different spatial distributions of the same excitation parameters. The new member-set (P21e) with magnetic flux compensation can experimentally determine the total power loss inside the load-component, which helps to validate the numerical modeling and simulation with confidence. The additional iron loss inside the laminated sheets caused by the magnetic flux normal to the laminations must be correctly modeled and predicted during the design and analysis. It is also observed that the magnetic properties (B27R090) measured in the rolling and transverse directions with different direct current (DC) biasing magnetic field are quite different from each other.

Research limitations/implications

The future benchmarking target is to study the effects of stronger HDC hybrid excitations on the internal loss behavior and the microstructure of magnetic load components.

Originality/value

This paper proposes a new extension of Problem 21 Family (1993–2021) with the upgraded excitation, involving multi-harmonics and DC bias. The alternating current (AC) and DC excitation can be applied at the two sides of the model’s load-component to avoid the adverse impact on the AC and DC power supply and investigate the effect of different AC and DC hybrid patterns on the total loss inside the load-component. The overall effectiveness of numerical modeling and simulation is highlighted and achieved via combining the efficient electromagnetic analysis methods and solvers, the reliable material property modeling and prediction under complex excitations and the precise FE computation model using partition processing. The outcome of this project will be beneficial to large-scale and high-performance numerical modeling.

Article
Publication date: 22 January 2024

Peng Yin, Tao Liu, Baofeng Pan and Ningbo Liu

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient…

Abstract

Purpose

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.

Design/methodology/approach

The formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.

Findings

The results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.

Originality/value

Moreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 13 March 2023

Ertugrul Uysal, Sascha Alavi and Valéry Bezençon

Anthropomorphism in Artificial Intelligence (AI)-powered devices is being used increasingly frequently in consumer-facing situations (e.g., AI Assistants such as Alexa, virtual…

Abstract

Purpose

Anthropomorphism in Artificial Intelligence (AI)-powered devices is being used increasingly frequently in consumer-facing situations (e.g., AI Assistants such as Alexa, virtual agents in websites, call/chat bots, etc.), and therefore, it is essential to understand anthropomorphism in AI both to understand consequences for consumers and to optimize firms' product development and marketing. Extant literature is fragmented across several domains and is limited in the marketing domain. In this review, we aim to bring together the insights from different fields and develop a parsimonious conceptual framework to guide future research in fields of marketing and consumer behavior.

Methodology

We conduct a review of empirical articles published until November 2021 in Financial Times Top 50 (FT50) journals as well as in 41 additional journals selected across several disciplinary domains: computer science, robotics, psychology, marketing, and consumer behavior.

Findings

Based on literature review and synthesis, we propose a three-step guiding framework for future research and practice on AI anthropomorphism.

Research Implications

Our proposed conceptual framework informs marketing and consumer behavior domains with findings accumulated in other research domains, offers important directions for future research, and provides a parsimonious guide for marketing managers to optimally utilize anthropomorphism in AI to the benefit of both firms and consumers.

Originality/Value

We contribute to the emerging literature on anthropomorphism in AI in three ways. First, we expedite the information flow between disciplines by integrating insights from different fields of inquiry. Second, based on our synthesis of literature, we offer a conceptual framework to organize the outcomes of AI anthropomorphism in a tidy and concise manner. Third, based on our review and conceptual framework, we offer key directions to guide future research endeavors.

Details

Artificial Intelligence in Marketing
Type: Book
ISBN: 978-1-80262-875-3

Keywords

Article
Publication date: 24 October 2023

Ying Zhao, Hongdi Xu, Guangyan Liu, Yanting Zhou and Yan Wang

Digital transformation and innovation-driven development have become an international consensus. The purpose of this paper is to examine the effects of relationships, mechanisms…

Abstract

Purpose

Digital transformation and innovation-driven development have become an international consensus. The purpose of this paper is to examine the effects of relationships, mechanisms and economic consequences between digital transformation and enterprise innovation quality in order to provide a benchmark for developing countries to implement digital transformation strategies and innovation-driven strategies and provide a major support for economic recovery in the post-coronavirus disease 2019 (COVID-19) era.

Design/methodology/approach

Using microdata from A-share listed enterprises in Shanghai and Shenzhen from 2010 to 2021, this study examines the relationship between digital transformation and enterprise innovation quality and further reveals the internal logic and economic consequences of digital transformation to improve enterprise innovation quality through the mediating effect and moderating effect models.

Findings

The results demonstrate that digital transformation is beneficial for improving enterprise innovation quality. The heterogeneity test demonstrates that digital transformation has a larger effect on improving enterprise innovation quality in non-state-owned enterprises and eastern enterprises in China. The mechanism test demonstrates that digital transformation can improve enterprise innovation quality by improving internal control quality and analyst attention. Furthermore, with the increase in enterprise innovation inputs, digital transformation plays a significantly stronger role in improving enterprise innovation quality. The extended analysis demonstrates that digital transformation can significantly improve enterprise financial performance by improving innovation quality.

Research limitations/implications

First, the construction of the core explanatory variable digital transformation index in this study is based on the Python data analysis software, which calculates the frequency of digital transformation in the text of the business situation analysis portion of the annual report of the listed companies and then obtains the degree of digital transformation of the company in this year. There may be some deviation from the degree of digital transformation in the actual production and operation of enterprises. Second, in addition to internal control quality and analyst attention, are there other mediating mechanisms for the impact of digital transformation on the quality of enterprise innovation? Third, whether the moderating effect of innovation input on digital transformation and innovation quality is related to human capital factors of the research and development (R&D) team, such as the technical background of R&D personnel, etc.

Originality/value

This study enriches the relevant theories of digital transformation and broadens the research boundaries of digital transformation and enterprise innovation. This study's result provides an empirical basis for enterprises to improve enterprise innovation quality and financial performance from the perspective of digital transformation at the micro level and points out specific practical directions, combining theory with practice.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Book part
Publication date: 3 August 2017

Matt Bower

Mobile devices, through their capacity to enable anytime-anywhere learning as well as capture, annotate and share multimedia, offer entirely new ways for students to learn. This…

Abstract

Mobile devices, through their capacity to enable anytime-anywhere learning as well as capture, annotate and share multimedia, offer entirely new ways for students to learn. This chapter provides review of mobile learning with a particular focus on learning design. First various definitions and characteristics of mobile learning are examined in order to establish a common understanding of its boundaries and meaning. Example uses of mobile learning in schools and higher education are described as a way to provide a more concrete understanding of design possibilities. Benefits of mobile learning are unpacked, as distilled from the literature, including the ability to provide flexible, accessible, authentic, personalized, ubiquitous and seamless learning. Mobile learning issues are also examined, including technical problems, cognitive load issues, distraction, equity and safety. A primary school science and a university pre-service teacher education vignette are described so as to offer a more in-depth illustration of what mobile learning can look like and achieve in practice. Finally, mobile learning research findings and observations are synthesized into recommendations, to inform and guide evidence-based mobile learning design practices. Opportunities for future research and investigation are also discussed.

Details

Design of Technology-Enhanced Learning
Type: Book
ISBN: 978-1-78714-183-4

Article
Publication date: 20 October 2023

Yao Chao, Tao Liu and Liming Shen

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Abstract

Purpose

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Design/methodology/approach

A universal indentation calculation model is derived based on the system theory, and the deformation characteristics of each component are analyzed by the finite element (FE) model of a partial air-spring mattress under the initial air pressure of 0.01–0.025 MPa. Finally, the calculation error of the model is verified.

Findings

The results indicate that the indentation calculation model could describe the stain of a mattress given the load and the constitutive model of each element. In addition, the FE model of a partial air-spring mattress can be used for further simulation analysis with an error of 1.47–3.42 mm. Furthermore, the deformation of the series system is mainly contributed by the air spring and the components directly in contact with it, while the top component is mainly deflection deformation. In addition, the error of the calculation model is 2.17–5.59 mm on the condition of 0.01–0.025 MPa, satisfying the engineering application. Finally, the supine spinal alignment is successfully extracted from the mattress indentation.

Research limitations/implications

The limitation of this study is that it needs to verify the practicality of the indentation calculation model for the Bonnier spiral spring mattress. The main feature of the Bonnier spring mattress is that all springs are connected, so the mattress deflection and neighborhood effect are more significant than those of the air-spring mattress. Therefore, the applicability of the model needs to be tested. Moreover, it is worth further research to reduce the deformation error of each component.

Practical implications

As part of the series of studies on the intelligent air-spring mattress, the indentation-based evaluation method of spinal alignment in sleep postures will be studied for hardness and intelligent regulation based on this study.

Social implications

The results of this research are ultimately used for the intelligent adjustment of air-spring mattresses, which automatically adjusts the hardness according to the user's sleep postures and spinal alignment, thus maintaining optimal spinal biomechanics. The successful application of this result could improve the sleep health of the general public.

Originality/value

Based on the series system theory, an indentation calculation model for mattresses with arbitrary structure is proposed, overcoming the dependence of parameters on materials and their combinations when fitting the Burgers model. Further, the spinal alignment in supine posture is extracted from the indentation, laying a theoretical foundation for further recognition and adjustment of the spinal alignment of the intelligent mattress.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2023

Yanbiao Zou, Tao Liu, Tie Zhang and Hubo Chu

This paper aims to propose a learning exponential jerk trajectory planning to suppress the residual vibrations of industrial robots.

Abstract

Purpose

This paper aims to propose a learning exponential jerk trajectory planning to suppress the residual vibrations of industrial robots.

Design/methodology/approach

Based on finite impulse response filter technology, a step signal with a proper amplitude first passes through two linear filters and then performs exponential filter shaping to obtain an exponential jerk trajectory and cancel oscillation modal. An iterative learning strategy designed by gradient descent principle is used to adjust the parameters of exponential filter online and achieve the maximum vibration suppression effect.

Findings

By building a SCARA robot experiment platform, a series of contrast experiments are conducted. The results show that the proposed method can effectively suppress residual vibration compared to zero vibration shaper and zero vibration and derivative shaper.

Originality/value

The idea of the adopted iterative leaning strategy is simple and reduces the computing power of the controller. A cheap acceleration sensor is available because it just needs to measure vibration energy to feedback. Therefore, the proposed method can be applied to production practice.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2019

Zhihua Niu, Zhimin Li, Sun Jin and Tao Liu

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an analysis…

Abstract

Purpose

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an analysis procedure extends the application area of direct linearization method (DLM) to compliant mechanisms and also illustrates the dimensional interaction within multi-loop compliant structures.

Design/methodology/approach

By applying DLM to both geometrical equations and Lagrange’s equations of the second kind, an analytical deviation modeling method for mechanisms with compliant joints are proposed and further used for statistical assembly variation analysis. The precision of this method is verified by comparing it with finite element simulation and traditional DLM.

Findings

A new modeling method is proposed to represent kinematic relationships between joint deformations and parts/components deviations. Based on a case evaluation, the computational efficiency is improved greatly while the modeling accuracy is maintained at more than 94% rate comparing with the benchmark finite element simulation.

Originality/value

The Equilibrium Equations of Incremental Forces derived from Lagrange’s equations are proposed to quantitatively represent the relationships between manufactured deviations and assembly deformations. The present method extends the application area of DLM to compliant structures, such as automobile suspension systems and some Micro-Electro-Mechanical-Systems.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 March 2016

Tao Liu, Zhixiang Fang, Qingzhou Mao, Qingquan Li and Xing Zhang

The spatial feature is important for scene saliency detection. Scene-based visual saliency detection methods fail to incorporate 3D scene spatial aspects. This paper aims to…

Abstract

Purpose

The spatial feature is important for scene saliency detection. Scene-based visual saliency detection methods fail to incorporate 3D scene spatial aspects. This paper aims to propose a cube-based method to improve saliency detection through integrating visual and spatial features in 3D scenes.

Design/methodology/approach

In the presented approach, a multiscale cube pyramid is used to organize the 3D image scene and mesh model. Each 3D cube in this pyramid represents a space unit similar to a pixel in the image saliency model multiscale image pyramid. In each 3D cube color, intensity and orientation features are extracted from the image and a quantitative concave–convex descriptor is extracted from the 3D space. A Gaussian filter is then used on this pyramid of cubes with an extended center-surround difference introduced to compute the cube-based 3D scene saliency.

Findings

The precision-recall rate and receiver operating characteristic curve is used to evaluate the method and other state-of-art methods. The results show that the method used is better than traditional image-based methods, especially for 3D scenes.

Originality/value

This paper presents a method that improves the image-based visual saliency model.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 3000