Search results

1 – 10 of 216
Article
Publication date: 22 March 2024

Atul Kumar Singh and V.R.Prasath Kumar

Implementing blockchain in sustainable development goals (SDGs) and environmental, social and governance (ESG)-aligned infrastructure development involves intricate strategic…

Abstract

Purpose

Implementing blockchain in sustainable development goals (SDGs) and environmental, social and governance (ESG)-aligned infrastructure development involves intricate strategic factors. Despite technological advancements, a significant research gap persists, particularly in emerging economies. This study aims to address the challenges related to SDGs and ESG objectives during infrastructure delivery remain problematic, identifying and evaluating critical strategic factors for successful blockchain implementation.

Design/methodology/approach

This study employs a three-stage methodology. Initially, 13 strategic factors are identified through a literature review and validated by conducting semi-structured interviews with six experts. In the second stage, the data were collected from nine additional experts. In the final stage, the collected data undergoes analysis using interpretive structural modeling (ISM)–cross-impact matrix multiplication applied to classification (MICMAC), aiming to identify and evaluate the independent and dependent powers of strategic factors driving blockchain implementation in infrastructure development for SDGs and ESG objectives.

Findings

The study’s findings highlight three significant independent factors crucial for successfully integrating blockchain technology (BT) into infrastructure development for SDGs and ESG goals: data security (F4), identity management (F8) and supply chain management (F7). The study unravels these factors, hierarchical relationships and dependencies by applying the MICMAC and ISM techniques, emphasizing their interconnectedness.

Originality/value

This study highlights critical strategic factors for successful blockchain integration in SDG and ESG-aligned infrastructure development, offering insights for policymakers and practitioners while emphasizing the importance of training and infrastructure support in advancing sustainable practices.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 March 2024

Yahao Wang, Zhen Li, Yanghong Li and Erbao Dong

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new…

Abstract

Purpose

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new constraint method to improve the performance of the sampling-based planner.

Design/methodology/approach

In this work, a constraint method (TC method) based on the idea of cross-sampling is proposed. This method uses the tangent space in the workspace to approximate the constrained manifold pattern and projects the entire sampling process into the workspace for constraint correction. This method avoids the need for extensive computational work involving multiple iterations of the Jacobi inverse matrix in the configuration space and retains the sampling properties of the sampling-based algorithm.

Findings

Simulation results demonstrate that the performance of the planner when using the TC method under the end-effector constraint surpasses that of other methods. Physical experiments further confirm that the TC-Planner does not cause excessive constraint errors that might lead to task failure. Moreover, field tests conducted on robots underscore the effectiveness of the TC-Planner, and its excellent performance, thereby advancing the autonomy of robots in power-line connection tasks.

Originality/value

This paper proposes a new constraint method combined with the rapid-exploring random trees algorithm to generate collision-free trajectories that satisfy the constraints for a high-dimensional robotic system under end-effector constraints. In a series of simulation and experimental tests, the planner using the TC method under end-effector constraints efficiently performs. Tests on a power distribution live-line operation robot also show that the TC method can greatly aid the robot in completing operation tasks with end-effector constraints. This helps robots to perform tasks with complex end-effector constraints such as grinding and welding more efficiently and autonomously.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 21 March 2024

Hedi Khedhiri and Taher Mkademi

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Abstract

Purpose

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Design/methodology/approach

We introduce and investigate the complex space HC consisting of all 2 × 2 complex matrices of the form ξ=z1+iw1z2+iw2z2iw2z1+iw1, (z1,w1,z2,w2)C4.

Findings

We develop on HC a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.

Originality/value

We give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable ξHC. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 13 April 2023

Sadia Samar Ali, Shahbaz Khan, Nosheen Fatma, Cenap Ozel and Aftab Hussain

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this…

Abstract

Purpose

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this context, drones have the potential to change many industries by making operations more efficient, safer and more economic. Therefore, this study investigates the use of drones as the next step in smart/digital warehouse management to determine their socio-economic benefits.

Design/methodology/approach

The study identifies various enablers impacting drone applications to improve inventory management, intra-logistics, inspections and surveillance in smart warehouses through a literature review, a test of concordance and the fuzzy Delphi method. Further, the graph theory matrix approach (GTMA) method was applied to ranking the enablers of drone application in smart/digital warehouses. In the subsequent phase, researchers investigated the relation between the drone application's performance and the enablers of drone adoption using logistic regression analysis under the TOE framework.

Findings

This study identifies inventory man agement, intra-logistics, inspections and surveillance are three major applications of drones in the smart warehousing. Further, nine enablers are identified for the adoption of drone in warehouse management. The findings suggest that operational effectiveness, compatibility of drone integration and quality/value offered are the most impactful enablers of drone adoption in warehouses. The logistic regression findings are useful for warehouse managers who are planning to adopt drones in a warehouse for efficient operations.

Research limitations/implications

This study identifies the enablers of drone adoption in the smart and digital warehouse through the literature review and fuzzy Delphi. Therefore, some enablers may be overlooked during the identification process. In addition to this, the analysis is based on the opinion of the expert which might be influenced by their field of expertise.

Practical implications

By considering technology-organisation-environment (TOE) framework warehousing companies identify the opportunities and challenges associated with using drones in a smart warehouse and develop strategies to integrate drones into their operations effectively.

Originality/value

This study proposes a TOE-based framework for the adoption of drones in warehouse management to improve the three prominent warehouse functions inventory management, intra-logistics, inspections and surveillance using the mixed-method.

Details

Benchmarking: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

107

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 March 2024

Frank Ato Ghansah, Weisheng Lu and Benjamin Kwaku Ababio

The COVID-19 pandemic has impacted the construction industry, yet still, it is unclear from existing studies about the critical challenges imposed on quality assurance (QA)…

Abstract

Purpose

The COVID-19 pandemic has impacted the construction industry, yet still, it is unclear from existing studies about the critical challenges imposed on quality assurance (QA), particularly Cross-border Construction Logistics and Supply Chain (Cb-CLSC). Thus, this study aims to identify and examine the critical challenges of QA of Cb-CLSC during the COVID-19 pandemic.

Design/methodology/approach

The aim is achieved via an embedded mixed-method approach pragmatically involving a desk literature review and engaging 150 experts across the globe using expert surveys, and results confirmed by semi-structured interviews. The approach is based on Interpretive Structural Modelling (ISM) as its foundation.

Findings

The study revealed ten critical challenges of QA, with the top four including “the shortage of raw construction material (C7)”, “design changes (C6)”, “collaboration and communication difficulties (C1)” and “changes in work practices (C10)”. However, examining the interrelationships among the critical challenges using ISM confirmed C7 and C10 as the most critical challenges. The study again revealed that the critical challenges are sensitive and capable of affecting themselves due to the nature of their interrelationship based on MICMAC analysis. Hence, being consistent with why all the challenges were considered critical amid the pandemic. Sentiment analysis revealed that the critical challenges have not been entirely negative but also positive by creating three areas of opportunities for improvement: technology adoption, worker management, and work process management. However, four areas of challenges in the QA include cost, raw material, time, and work process, including inspection, testing, auditing, communication, etc.

Practical implications

The finding provides a convenient point of reference to researchers, policymakers, practitioners, and decision-makers on formulating policies to enhance the effectiveness of construction QA during the pandemic through to the post-pandemic era.

Originality/value

The study enriches the extant literature on QA, Cb-CLSC, and the COVID-19 pandemic in the construction industry by identifying the critical challenges and examining the interrelationships among them. This provides a better understanding of how the construction QA has been affected by the pandemic and the opportunities created.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 February 2024

Cori Crews, John Abernathy, Jimmy Carmenate, Divesh Sharma and Vineeta Sharma

The purpose of this study is to investigate the association between nonaudit services (NAS) and out-of-period adjustments (OOPAs). Over the years, the number of OOPAs has risen…

Abstract

Purpose

The purpose of this study is to investigate the association between nonaudit services (NAS) and out-of-period adjustments (OOPAs). Over the years, the number of OOPAs has risen while the number of restatements has decreased. This could indicate an improvement in financial reporting quality. It could also indicate the use of a type of stealth restatement for opportunistic purposes. These less prominent restatements are more likely to go undetected and could perpetuate opportunistic disclosure and mitigate the likelihood of unfavorable market reactions.

Design/methodology/approach

The authors use a two-stage multivariate regression analysis to examine the relationship between NAS and the reporting of an OOPA. The authors use prior research on NAS to guide the model development. The authors perform several robustness checks including different types of NAS and different characteristics of OOPAs.

Findings

The results indicate that NAS has a significantly negative association with the existence of OOPAs. The core findings suggest that NAS does not impair auditor independence. Rather, greater amounts of NAS may contribute to knowledge spillover, which leads to higher financial reporting and audit quality. The results are robust to several additional tests.

Research limitations/implications

The results raise interesting implications for regulators, executives, auditors, investors and future research. The authors provide insight into the relationship between NAS and auditor independence.

Originality/value

To the best of the authors’ knowledge, prior research has not considered the effect of NAS on OOPAs. The authors contribute to the literature by providing evidence that OOPAs, a form of stealth restatements, is an important consideration in audit quality research.

Details

Managerial Auditing Journal, vol. 39 no. 3
Type: Research Article
ISSN: 0268-6902

Keywords

1 – 10 of 216