Search results

1 – 10 of 32
Article
Publication date: 23 February 2015

M.R. Merad Boudia, A Cheknane and B Benyoucef

A numerical simulation study of a Tandem solar cell is presented. The parameters of single and two-diodes lumped-circuit model are usually the saturation current, the series…

Abstract

A numerical simulation study of a Tandem solar cell is presented. The parameters of single and two-diodes lumped-circuit model are usually the saturation current, the series resistance, the ideality factor, the shunt resistance and the photocurrent. It is found that the influence of the distributed series resistance on electrical characteristics can be described numerically by the application of the two models to Tandem organic solar cells. A description of the efficiency, fill factor, open circuit voltage and short circuit current on the devices are marked with series resistance, temperature and ideality factor. This approach allows one to obtain a set of parameters which is reasonable and representative of the physical system.

Details

World Journal of Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 October 2015

Muhammad Ahsan Naveed, A. Hussain, K. Islam and P. Akhter

Organic solar cells have potential as an alternative to conventional inorganic solar cell due to low processing cost, flexibility and easy fabrication technique.The goal of this…

Abstract

Organic solar cells have potential as an alternative to conventional inorganic solar cell due to low processing cost, flexibility and easy fabrication technique.

The goal of this paper is to study the characteristics of the CuPc and PCBM based organic solar cell by introducing a thin layer of Ag at the interface of donor (CuPc) and Acceptor (PCBM), their photovoltaic and optical properties were investigated. The heterojunction solar cells with and without silver inter layer were fabricated through thermal deposition in HR vacuum. The OPV solar cells were characterized using current-voltage graphs, absorbance spectrum and Impedance spectroscopy. Impedance spectroscopy was taken to identify the traps using series resistance, parallel resistance, and Impedance spectrums under different frequencies. Optical behaviors of these devices have been investigated with absorbance spectrum.

Introducing Ag to interfacing point produced traps and these traps causes to decreased Voc, Isc, FF, and efficiency. The effect of silver layer at donor acceptor interface was studied.

Details

World Journal of Engineering, vol. 12 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 August 2018

Kindness A.M. Uyanga, Modestus Okechukwu Okwu, A.O. Adeoye and S.E. Ogbeide

The study aims to carry out the production of a bulk heterojunction organic solar cell in a laboratory scale using a blend of poly (3-hexylthiopene) (P3HT) and [6, 6]-phenyl (C61…

Abstract

Purpose

The study aims to carry out the production of a bulk heterojunction organic solar cell in a laboratory scale using a blend of poly (3-hexylthiopene) (P3HT) and [6, 6]-phenyl (C61) butyric acid methyl ether (PCBM).

Design/methodology/approach

Four inverted geometry organic solar cells were prepared based on 1:1 ratio of P3HT to PCBM and subjected to post annealing at different temperatures of 32, 120, 130 and 140°C. Solar cells were fabricated with structure glass/ITO/P3HT:PCBM/PEDOT:PSS/Au and characterized using Keithley 2400 series sourcemeter and a multimeter interfaced to a computer system with a LabVIEW software, which showed both dark and illumination current–voltage characteristic curves. Four reference cells were also fabricated with structure soda lime glass/P3HT:PCBM and annealed at different temperatures of 32, 120, 130 and 140°C.

Findings

The third organic solar cell prepared, Sample CITO, had the best performance with power conversion efficiency (PCE) of 2.0281 per cent, fill factor (FF) of 0.392, short circuit current of −0.0133 A and open circuit voltage of 0.389 V. Annealing of active layer was found to improve cell morphology, FF and PCE. Annealing of the active layer at 140°C resulted in a decrease of the PCE to 2.01 per cent.

Research limitations/implications

These findings are in good agreement with previous investigation in literature which reported that best annealing temperature for a 1:1 ratio blend of active material is 130°C. Ultraviolet–visible spectra on reference cells showed that sample CITO had wider absorption spectra with peak absorbance at a wavelength of 508 nm.

Originality/value

This research is purely original.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 January 2015

F. Aziz, Z. Ahmad, S.M. Abdullah, K. Sulaiman and M.H. Sayyad

The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H…

Abstract

Purpose

The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO). The use of soluble vanadyl phthalocyanine derivative makes it very attractive for photovoltaic applications due to its tunable properties and high solubility.

Design/methodology/approach

A photoactive layer of VOPcPhO has been sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes to produce a ITO/PEDOT:PSS/VOPcPhO/Al photovoltaic device. The VOPcPhO thin film is deposited by a simple spin coating technique. To obtain the optimal thickness for the solar cell device, different thicknesses of the photoactive layer, achieved by manipulating the spin rate, have been investigated.

Findings

The device exhibited photovoltaic effect with the values of Jsc, Voc and FF equal to 5.26 × 10-6 A/cm2, 0.621 V and 0.33, respectively. The electronic parameters of the cell have been obtained from the analysis of current-voltage characteristics measured in dark. The values of ideality factor and barrier height were found to be 2.69 and 0.416 eV, respectively. The optical examination showed that the material is sensitive to light in the UV region between 270 nm and 410 nm, as well as in the visible spectrum within the range of 630 nm and 750 nm.

Research limitations/implications

The solar cell based on a single layer of vanadyl phthalocyanine derivative results in low efficiency, which can be enhanced by introducing a variety of donor materials to form bulk heterojunction solar cells.

Practical implications

The spin coating technique provides a simple, less expensive and effective approach for preparing thin films.

Originality/value

A novel thin-film, single-junction organic solar cell, fabricated by using VOPcPhO, has been investigated for the first time ever. The vanadyl phthalocyanine derivative together with a donor material will have potential application for improved efficiency of the solar cells.

Article
Publication date: 5 December 2016

Shahrooz Hajighorbani, Mohd Amran Mohd Radzi, Mohd Zainal Abidin Ab Kadir and Suhaidi Bin Shafie

The purpose of this study is to show in power-voltage curve, a unique maximum power point (MPP) is existed which has the maximum power.

Abstract

Purpose

The purpose of this study is to show in power-voltage curve, a unique maximum power point (MPP) is existed which has the maximum power.

Design/methodology/approach

This paper presents a MPP tracker algorithm for a standalone system includes DC-DC buck converter and battery storage.

Findings

By using this algorithm, the maximum available power is achieved and simultaneously, the battery is charged and also protected against overcharge and discharge. The operation of the proposed algorithm is evaluated in with Proteus software to be sure that it can be implemented in microcontroller in reality.

Originality/value

The simulations results show that the proposed algorithm is able to detect the MPP under different irradiations. Moreover, the battery is charged during the day by PV and protected against overcharge and discharge.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 March 2011

Shuzi Hayase

Dye-sensitized solar cells consisting of tandem and hybrid structures are reported. It was proved that these new structures have a potential to harvest light with wide range of…

Abstract

Dye-sensitized solar cells consisting of tandem and hybrid structures are reported. It was proved that these new structures have a potential to harvest light with wide range of wavelength and increase open circuit voltage. In addition, modification of charge separation interfaces with organic molecules and dyes are discussed in terms of trap passivations which bring about high efficiency.

Details

World Journal of Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 February 2021

Omid Malekan, Mehdi Adelifard and Mohamad Mehdi Bagheri Mohagheghi

In the past several years, CH3NH3PbI3 perovskite material has been extensively evaluated as an absorber layer of perovskite solar cells due to its excellent structural and optical…

248

Abstract

Purpose

In the past several years, CH3NH3PbI3 perovskite material has been extensively evaluated as an absorber layer of perovskite solar cells due to its excellent structural and optical properties, and greater than 22% conversion efficiency. However, improvement and future commercialization of solar cells based on CH3NH3PbI3 encountered restrictions due to toxicity and instability of the lead element. Recently, studies on properties of lead-free and mixture of lead with other cations perovskite thin films as light absorber materials have been reported. The purpose of this paper was the fabrication of CH3NH3Sn1-xPbxI3 thin films with different SnI2 concentrations in ambient condition, and study on the structural, morphological, optical, and photovoltaic performance of the studied solar cells. The X-ray diffraction studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases with increasing the Sn concentration, and improvement in crystallinity and morphology was also observed. All perovskite layers had a relatively high absorption coefficient >104 cm−1 in the visible wavelengths, and the bandgap values varied in the range from 1.46 to 1.63 eV. Perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%.

Design/methodology/approach

In this work, the author mixed tin and lead with different percentages in the perovskite thin film. Also, the preparation of these layers and also other layers to fabricate solar cells based on them were conducted in an open and non-glove box environment. Finally, the effect of [Sn/Pb] ratio in the CH3NH3Sn1-xPbxI3 layers on the structural, morphological, optical, electrical and photovoltaic performance have been investigated.

Findings

CH3NH3Sn1-xPbxI3 (x = 0.0, 0.25, 0.50, 0.75, 1.0) perovskite thin films have been grown by a spin-coating technique. It was found that as tin concentration increases, the X-ray diffraction and FESEM images studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases, and improvement in crystallinity, and morphology; all thin films had high absorption coefficient values close to 104 cm−1 in the visible region, and the direct optical bandgap in the layers decreases from 1.63 eV in pure CH3NH3SnI3 to 1.46 eV for CH3NH3Sn0.0.25Pb0.75I3 samples; all thin films had p-type conductivity, and mobility and carrier density increased; perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%.

Originality/value

The preparation method seems to be interesting as it is in an ambient environment without the protection of nitrogen or argon gas.

Article
Publication date: 2 September 2019

Mozhgan Hosseinnezhad and Hanieh Shaki

The purpose of this paper is to study the substituent effect in dye-sensitized solar cells’ (DSSCs) performance. For this end, three new metal organic dyes with DPA structure were…

Abstract

Purpose

The purpose of this paper is to study the substituent effect in dye-sensitized solar cells’ (DSSCs) performance. For this end, three new metal organic dyes with DPA structure were synthesized. For investigation of the substituent effect, two different anchoring groups, namely, 1,3-dioxo-1Hbenz[de]isoquinolin-2(3H)-yl)benzenesulfonamides and 1,8-naphthalimide, were used.

Design/methodology/approach

Three organic dyes based on azo were selected, which contain various electron donor groups. Absorption properties of purified dyes were studied in solution and on photoelectrode (TiO2 and ZnO) substrate. DSSCs were prepared to determine the photovoltaic performance of each photosensitizer.

Findings

The results showed that all organic dyes form J-aggregation on the photoanode substrate. Cyclic voltammetry results for all organic dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of photo-electric conversion. The results illustrate conversion efficiencies of cells based on solution Dyes 1, 2 and 3 and TiO2 as 3.44, 4.71 and 4.82 per cent, respectively. The conversion efficiencies of cells based on solution Dye 1, 2 and 3 and ZnO are 3.21, 4.09 and 4.14 per cent, respectively.

Practical implications

In this study, the development of effect of assembling materials, offering improved photovoltaic properties.

Social implications

Organic dye attracts more and more attention because of its low-cost, facile route synthesis and less-hazardous properties.

Originality/value

To the best of the authors’ knowledge, the effect of anchoring agent and nanostructure on DSSCs performance was investigated for the first time.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 June 2020

Kuei-Kuei Lai, Hsueh-Chen Chen, Yu-Hsin Chang, Vimal Kumar and Priyanka C. Bhatt

This study aims to propose a methodology by integrating three approaches, namely, internal core technology, external knowledge flow and industrial technology development to help…

Abstract

Purpose

This study aims to propose a methodology by integrating three approaches, namely, internal core technology, external knowledge flow and industrial technology development to help companies improve their decision-making quality for technology planning and enhance their research and development (R&D) portfolio efficiency.

Design/methodology/approach

The primary focus of this study is thin-film solar technology and patent data is retrieved from the United States Patent and Trademark Office (USPTO) database. This study presents a methodology based on the proposed integrated analysis method, constructed with patent indicators, centrality analysis of social networks and main path analysis.

Findings

The results of this study can be itemized as – the core technological competency: companies involved in two specific technology fields have lower strength in R&D portfolio than leading companies with single-core technology. Knowledge flow: most companies in a network are knowledge producers/absorbers and technological development: diverse source and sink nodes were identified in the global main path during 1997-2003, 2004-2010 and 2011-2017.

Research limitations/implications

Latecomer companies can emulate leaders’ innovation and enhance their technological competence to seek niche technology. Using the global main path, companies monitor outdated technologies that can be replaced by new technologies and aid to plan R&D strategy and implement appropriate strategic decisions avoiding path dependency.

Originality/value

The knowledge accumulation process helps in identifying the change of position and the role of companies; understanding the trend of industrial technology knowledge helps companies to develop new technology and direct strategic decisions. The novelty of this research lies in the integrated approach of three methods aiding industries to find their internal core technical competencies and identify the external position in the competitive market.

Details

Journal of Knowledge Management, vol. 25 no. 2
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 1 February 1998

Jyoti Lata Pandey and M.K. Banerjee

Solar selective coatings are designed and formulated for effective collection and retention of solar energy. Several types of coatings can be utilized for economical collection of…

2480

Abstract

Solar selective coatings are designed and formulated for effective collection and retention of solar energy. Several types of coatings can be utilized for economical collection of solar energy, the most common and simplest will be ordinary non‐glass, heat resistant black paint. The coatings may be moderately selective or non‐selective absorbers, consisting of organic or inorganic matt black paints. These are easiest to apply and the least expensive of all collector coatings. In this category other types are ceramic and organic enamels and chemical or electrochemical metal conversion coatings. An impending energy crisis has already aroused interest and scientific pursuit in the field. An analysis of the state‐of‐the‐art in solar selective coatings was felt necessary at this time.

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 32