Search results

1 – 10 of 171
Article
Publication date: 12 June 2017

Amira Aydi, Mohamed Djemel and Mohamed Chtourou

The purpose of this paper is to use the internal model control to deal with nonlinear stable systems affected by parametric uncertainties.

Abstract

Purpose

The purpose of this paper is to use the internal model control to deal with nonlinear stable systems affected by parametric uncertainties.

Design/methodology/approach

The dynamics of a considered system are approximated by a Takagi-Sugeno fuzzy model. The parameters of the fuzzy rules premises are determined manually. However, the parameters of the fuzzy rules conclusions are updated using the descent gradient method under inequality constraints in order to ensure the stability of each local model. In fact, without making these constraints the training algorithm can procure one or several unstable local models even if the desired accuracy in the training step is achieved. The considered robust control approach is the internal model. It is synthesized based on the Takagi-Sugeno fuzzy model. Two control strategies are considered. The first one is based on the parallel distribution compensation principle. It consists in associating an internal model control for each local model. However, for the second strategy, the control law is computed based on the global Takagi-Sugeno fuzzy model.

Findings

According to the simulation results, the stability of all local models is obtained and the proposed fuzzy internal model control approaches ensure robustness against parametric uncertainties.

Originality/value

This paper introduces a method for the identification of fuzzy model parameters ensuring the stability of all local models. Using the resulting fuzzy model, two fuzzy internal model control designs are presented.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 3 October 2016

Anish Pandey and Dayal R. Parhi

This paper aims to design a Takagi–Sugeno fuzzy model with a simulated annealing hybrid algorithm (fuzzy-SAA) that was implemented for mobile robot navigation and obstacle…

Abstract

Purpose

This paper aims to design a Takagi–Sugeno fuzzy model with a simulated annealing hybrid algorithm (fuzzy-SAA) that was implemented for mobile robot navigation and obstacle avoidance in a cluttered environment.

Design/methodology/approach

The SAA is used to optimize the output parameters of the fuzzy controller. The ultrasonic range finder sensor and sharp infrared range sensor are used for calculating the different obstacle distances, such as front, right and left obstacle distance, for selecting the suitable steering angle control command in the environment.

Findings

The simulation and experimental results show the proposed method is feasible and valid for a wheeled mobile robot moving in a cluttered environment.

Originality/value

The developed fuzzy-SAA hybrid algorithm provides better results (in terms of navigation path length and time) as compared to previous works, which verifies the effectiveness and efficiency of the developed hybrid algorithm.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 July 2018

Imen Maalej, Donia Ben Halima Abid and Chokri Rekik

The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy

Abstract

Purpose

The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy model subjected to stochastic noise and actuator faults.

Design/methodology/approach

An IT2 fuzzy augmented state observer is first developed to estimate simultaneously the system states and the actuator faults since this estimation is required for the design of the FTC control law. Furthermore, based on the information of the states and the faults estimate, an IT2 fuzzy state feedback controller is conceived to compensate for the faults effect and to ensure a good tracking performance between the healthy system and the faulty one. Sufficient conditions for the existence of the IT2 fuzzy controller and the IT2 fuzzy observer are given in terms of linear matrix inequalities which can be solved using a two-step computing procedure.

Findings

The paper opted for simulation results which are applied to the three-tank system. These results are presented to illustrate the effectiveness of the proposed FTC strategy.

Originality/value

In this paper, the problem of active FTC design for noisy and faulty nonlinear system represented by IT2 TS fuzzy model is treated. The developed IT2 fuzzy fault tolerant controller is designed such that it can guarantee the stability of the closed-loop system. Moreover, the proposed controller allows to accommodate for faults, presents a satisfactory state tracking performance and outperforms the traditional type-1 fuzzy fault tolerant controller.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 June 2009

Wen‐Jer Chang, Cheung‐Chieh Ku and Wei Chang

The purpose of this paper is to propose a stability analysis and control synthesis for achieving passivity properties of a class of continuous‐time nonlinear systems. These…

Abstract

Purpose

The purpose of this paper is to propose a stability analysis and control synthesis for achieving passivity properties of a class of continuous‐time nonlinear systems. These nonlinear systems are represented via continuous affine Takagi‐Sugeno (T‐S) fuzzy models, which played an important role in nonlinear control systems. The affine T‐S fuzzy models are more approximate than homogeneous T‐S fuzzy models for modeling nonlinear systems. Using the energy concept of passivity theory with Lyapunov function, the conditions are derived to ensure the passivity and stability of nonlinear systems. Based on the parallel distribution compensation (PDC) technique, this paper proposes a fuzzy controller design approach to achieve the passivity and stability for the continuous affine T‐S fuzzy systems.

Design/methodology/approach

For solving stability and stabilization problems of affine T‐S fuzzy models, the conversion techniques and passive theory are employed to derive the stability conditions. By applying the linear matrix inequality technique, a modified iterative linear matrix inequality algorithm is proposed to determine and update the auxiliary variables for finding feasible solutions of these stability conditions.

Findings

By studying the numerical example, the proposed design technique of this paper is an effectiveness and useful approach to design the PDC‐based fuzzy controller. From the simulation results, the considered nonlinear system with external disturbances driven by proposed design fuzzy controller is stable and strictly input passive.

Originality/value

This paper is interesting for designing fuzzy controller to guarantee the stability and strict input passivity of affine T‐S fuzzy models.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 December 2017

Ali Alouache and Qinghe Wu

The aim of this paper is to propose a robust robot fuzzy logic proportional-derivative (PD) controller for trajectory tracking of autonomous nonholonomic differential drive…

Abstract

Purpose

The aim of this paper is to propose a robust robot fuzzy logic proportional-derivative (PD) controller for trajectory tracking of autonomous nonholonomic differential drive wheeled mobile robot (WMR) of the type Quanser Qbot.

Design/methodology/approach

Fuzzy robot control approach is used for developing a robust fuzzy PD controller for trajectory tracking of a nonholonomic differential drive WMR. The linear/angular velocity of the differential drive mobile robot are formulated such that the tracking errors between the robot’s trajectory and the reference path converge asymptotically to zero. Here, a new controller zero-order Takagy–Sugeno trajectory tracking (ZTS-TT) controller is deduced for robot’s speed regulation based on the fuzzy PD controller. The WMR used for the experimental implementation is Quanser Qbot which has two differential drive wheels; therefore, the right/left wheel velocity of the differential wheels of the robot are worked out using inverse kinematics model. The controller is implemented using MATLAB Simulink with QUARC framework, downloaded and compiled into executable (.exe) on the robot based on the WIFI TCP/IP connection.

Findings

Compared to other fuzzy proportional-integral-derivative (PID) controllers, the proposed fuzzy PD controller was found to be robust, stable and consuming less resources on the robot. The comparative results of the proposed ZTS-TT controller and the conventional PD controller demonstrated clearly that the proposed ZTS-TT controller provides better tracking performances, flexibility, robustness and stability for the WMR.

Practical implications

The proposed fuzzy PD controller can be improved using hybrid techniques. The proposed approach can be developed for obstacle detection and collision avoidance in combination with trajectory tracking for use in environments with obstacles.

Originality/value

A robust fuzzy logic PD is developed and its performances are compared to the existing fuzzy PID controller. A ZTS-TT controller is deduced for trajectory tracking of an autonomous nonholonomic differential drive mobile robot (i.e. Quanser Qbot).

Details

Industrial Robot: An International Journal, vol. 45 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 June 2021

Himanshukumar R. Patel and Vipul A. Shah

The purpose of this paper is to stabilize the type-2 Takagi–Sugeno (T–S) fuzzy systems with the sufficient and guaranteed stability conditions. The given conditions efficaciously…

Abstract

Purpose

The purpose of this paper is to stabilize the type-2 Takagi–Sugeno (T–S) fuzzy systems with the sufficient and guaranteed stability conditions. The given conditions efficaciously handle parameter uncertainties by the upper and lower membership functions of the type-2 fuzzy sets (FSs).

Design/methodology/approach

This paper reports on a relevant study of stable fuzzy controllers and type-2 T–S fuzzy systems and reported that the synthesis of controller for nonlinear systems described by the type-2 T–S fuzzy model is a key problem and it can be resolve to convex problems via linear matrix inequalities (LMIs).

Findings

The multigain fuzzy controllers are established to improve the solvability of the stability conditions, and the authors design multigain fuzzy controllers which have extensive information of upper and lower membership grades. Consequently, the authors derive the traditional stability condition in terms of LMIs. One simulation examples illustrate the effectiveness and robustness of the derived stabilization conditions.

Originality/value

The uncertain MIMO nonlinear system described by Type-2 Takagi-Sugeno (T-S) fuzzy model, and successively LMI approach used to determine the system stability conditions. The proposed control approach will give superior fault-tolerant control permanence under the actuator fault [partial loss of effectiveness (LOE)]. Also the controller robust against the unmeasurable process disturbances. Additionally, the statistical z-test are carried out to validate the proposed control approach against the control approach proposed by Himanshukumar and Vipul (2019a).

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 November 2015

Ameni Ellouze, François Delmotte, Jimmy Lauber, Mohamed Chtourou and Mohamed Ksantini

The purpose of this paper is to deal with the stabilization of the continuous Takagi Sugeno (TS) fuzzy models using their discretized forms based on the decay rate performance…

Abstract

Purpose

The purpose of this paper is to deal with the stabilization of the continuous Takagi Sugeno (TS) fuzzy models using their discretized forms based on the decay rate performance approach.

Design/methodology/approach

This approach is structured as follows: first, a discrete model is obtained from the discretization of the continuous TS fuzzy model. The discretized model is obtained from the Euler approximation method which is used for several orders. Second, based on the decay rate stabilization conditions, the gains of a non-PDC control law ensuring the stabilization of the discrete model are determined. Third by keeping the values of the gains, the authors determine the values of the performance criterion and the authors check by simulation the stability of the continuous TS fuzzy models through the zero order hold.

Findings

The proposed idea lead to compare the performance continuous stability results with the literature. The comparison is, also, taken between the quadratic and non-quadratic cases.

Originality/value

Therefore, the originality of this paper consists in the improvement of the continuous fuzzy models by using their discretized models. In this case, the effect of the discretization step on the performances of the continuous TS fuzzy models is studied. The usefulness of this approach is shown through two examples.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 July 2006

Ajith Abraham, Sonja Petrovic‐Lazarevic and Ken Coghill

This paper aims to propose a novel computational framework called EvoPOL (EVOlving POLicies) to support governmental policy analysis in restricting recruitment of smokers. EvoPOL…

Abstract

Purpose

This paper aims to propose a novel computational framework called EvoPOL (EVOlving POLicies) to support governmental policy analysis in restricting recruitment of smokers. EvoPOL is a fuzzy inference‐based decision support system that uses an evolutionary algorithm (EA) to optimize the if‐then rules and its parameters. The performance of the proposed method is compared with a fuzzy inference method adapted using neural network learning technique (neuro‐fuzzy).

Design/methodology/approach

EA is a population‐based adaptive method, which may be used to solve optimization problems, based on the genetic processes of biological organisms. The Takagi‐Sugeno fuzzy decision support system was developed based on three sub‐systems: fuzzification, fuzzy knowledge base (if‐then rules) and defuzzification. The fine‐tuning of the fuzzy rule base and membership function parameters is achieved by using an EA.

Findings

The proposed EvoPOL technique is simple and efficient when compared to the neuro‐fuzzy approach. However, EvoPOL attracts extra computational cost due to the population‐based hierarchical search process. When compared to neuro‐fuzzy model the error values on the test sets have improved considerably. Hence, when policy makers require more accuracy EvoPOL seems to be a good solution.

Originality/value

When policy makers require more accuracy EvoPOL seems to be a good solution. For complicated decision support systems involving more input variables, EvoPOL would be an excellent candidate for framing if‐then rules with precise decision scores that could help the government representatives as to what extent to concentrate on available social regulation measures in restricting the recruitment of smokers.

Details

Kybernetes, vol. 35 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 June 2019

Mohamed Ali Jemmali, Martin J.-D. Otis and Mahmoud Ellouze

Nonlinear systems identification from experimental data without any prior knowledge of the system parameters is a challenge in control and process diagnostic. It determines…

Abstract

Purpose

Nonlinear systems identification from experimental data without any prior knowledge of the system parameters is a challenge in control and process diagnostic. It determines mathematical model parameters that are able to reproduce the dynamic behavior of a system. This paper aims to combine two fundamental research areas: MIMO state space system identification and nonlinear control system. This combination produces a technique that leads to robust stabilization of a nonlinear Takagi–Sugeno fuzzy system (T-S).

Design/methodology/approach

The first part of this paper describes the identification based on the Numerical algorithm for Subspace State Space System IDentification (N4SID). The second part, from the identified models of first part, explains how we use the interpolation of linear time invariants models to build a nonlinear multiple model system, T-S model. For demonstration purposes, conditions on stability and stabilization of discrete time, T-S model were discussed.

Findings

Stability analysis based on the quadratic Lyapunov function to simplify implementation was explained in this paper. The linear matrix inequalities technique obtained from the linearization of the bilinear matrix inequalities was computed. The suggested N4SID2 algorithm had the smallest error value compared to other algorithms for all estimated system matrices.

Originality/value

The stabilization of the closed-loop discrete time T-S system, using the improved parallel distributed compensation control law, was discussed to reconstruct the state from nonlinear Luenberger observers.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 October 2012

GuoYuan Tang, DaoMin Huang and Zhiyong Deng

The purpose of this paper is to design a steering control for vehicles to protect the vehicle from spin and to realize improved cornering performance.

Abstract

Purpose

The purpose of this paper is to design a steering control for vehicles to protect the vehicle from spin and to realize improved cornering performance.

Design/methodology/approach

The improved cornering performance is realized based on Takagi‐Sugeno fuzzy model and generalized predictive control (GPC). A new approach to establish model of the vehicle is presented on the basis of fuzzy neural network. The network which inputs and outputs are composed of five layers of forward structure is utilized to build the structure and parameters of T‐S fuzzy model through learning from training data. In this way, the vehicle dynamic system is divided into many linear sub‐systems, and the system output is the weighted‐sum of these sub‐systems' outputs. A CARIMA model can be derived from the presented fuzzy model, and GPC is applied to deal with the control problem of vehicle stability.

Findings

Vehicle model can be divided into local linear models, corresponding controller can be developed. Simulation results show that fuzzy model based on GPC can be applied to improve stability of the vehicle effectively.

Research limitations/implications

As an exploration of a new approach, the training data are from simulation, and the result of the paper will be applied in actual vehicle trials.

Practical implications

The paper presents useful advice for developing a vehicle stability controller.

Originality/value

The paper presents a new approach to establish a model of the vehicle on the basis of fuzzy neural network, which is valuable for establishing a new controller for vehicle stability.

1 – 10 of 171