Search results

1 – 10 of 482
Article
Publication date: 7 June 2018

Chien-Yi Huang

This research aims to study the stencil printing process of the quad flat package (QFP) component with a pin pitch of 0.4 mm. After the optimization of the printing process, the…

Abstract

Purpose

This research aims to study the stencil printing process of the quad flat package (QFP) component with a pin pitch of 0.4 mm. After the optimization of the printing process, the desired inspection specification is determined to reduce the expected total process loss.

Design/methodology/approach

Static Taguchi parametric design is applied while considering the noise factors possibly affecting the printing quality in the production environment. The Taguchi quality loss function model is then proposed to evaluate the two types of inspection strategies.

Findings

The optimal parameter-level treatment for the solder paste printing process includes a squeegee pressure of 11 kg, a stencil snap-off of 0.14 mm, a cleaning frequency of the stencil once per printing and using an air gun after stencil wiping. The optimal upper and lower specification limits are 119.8 µm and 110.3 µm, respectively.

Originality/value

Noise factors in the production environment are considered to determine the optimal printing process. For specific components, the specification is established as a basis for subsequent processes or reworks.

Details

Soldering & Surface Mount Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 November 2021

Ching-Hsiang Chen, Chien-Yi Huang and Yan-Ci Huang

The purpose of this study is to use the Taguchi Method for parametric design in the early stages of product development. electromagnetic compatibility (EMC) issues can be…

Abstract

Purpose

The purpose of this study is to use the Taguchi Method for parametric design in the early stages of product development. electromagnetic compatibility (EMC) issues can be considered in the early stages of product design to reduce counter-measure components, product cost and labor consumption increases due to a number of design changes in the R&D cycle and to accelerate the R&D process.

Design/methodology/approach

The three EMC characteristics, including radiated emission, conducted emission and fast transient impulse immunity of power, are considered response values; control factors are determined with respect to the relevant parameters for printed circuit board and mechanical design of the product and peripheral devices used in conjunction with the product are considered as noise factors. The optimal parameter set is determined by using the principal component gray relational analysis in conjunction with both response surface methodology and artificial neural network.

Findings

Market specifications and cost of components are considered to propose an optimal parameter design set with the number of grounded screw holes being 14, the size of the shell heat dissipation holes being 3 mm and the arrangement angle of shell heat dissipation holes being 45 degrees, to dispose of 390 O filters on the noise source.

Originality/value

The optimal parameter set can improve EMC effectively to accommodate the design specifications required by customers and pass test regulations.

Article
Publication date: 3 January 2017

Chien-Yi Huang and Ching-Hsiang Chen

Differing from previous studies trying to solve the electromagnetic compatibility (EMC) issue by addressing single factor, this study aims to combine measures of shielding…

Abstract

Purpose

Differing from previous studies trying to solve the electromagnetic compatibility (EMC) issue by addressing single factor, this study aims to combine measures of shielding, filtering and grounding to design parameters with the Taguchi method at the beginning of product design to come up with the optimal parameter combination.

Design/methodology/approach

EMC-related performance such as radiated emission, conduction interference and electrical fast transient/burst immunity (EFT) are response variables, whereas the printed circuit board and mechanic design-relevant parameters are considered as control factors. The noise factors are peripherals used together with the tablet.

Findings

The optimal design parameter matrix based on results from the application and integration of multivariate analysis method of principal component grey relation and technique for order preference by similarity to ideal solution suggests 14 grounding screw holes, cooling aperture of casing at diameter of 3 mm and staggered layout and 300O filter located at source of noise. Validation of this matrix shows around 10, 1 and 8 per cent improvement in radiation, conduction interference and EFT immunity.

Originality/value

The multivariate quality parameters’ design method proposed by this study improves EMC characteristics of products and meets the design specification required by customer, accelerating electronic product research and development process and complying with electromagnetic interference test regulations set forth by individual country.

Details

Microelectronics International, vol. 34 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 19 February 2020

Himadri Majumder and Kalipada Maity

The purpose of this study aims to obtain excellent products, consistent investigation and manufacturing process control which are the preconditions that organizations have to…

Abstract

Purpose

The purpose of this study aims to obtain excellent products, consistent investigation and manufacturing process control which are the preconditions that organizations have to consider. Nowadays, manufacturing industry apprise process capability index (Cpi) to evaluate the nature of their things with an expect to enhance quality and also to improve the productivity by cutting down the operating cost. In this paper, process capability analysis was applied during wire electrical discharge machining (WEDM) of titanium grade 6, to study the process performance within specific limits.

Design/methodology/approach

Four machine input parameters, namely, pulse ON time, pulse OFF time, wire feed and wire tension, were chosen for process capability study. Experiments were carried out according to Taguchi’s L27 orthogonal array. The value of Cpi was evaluated for two machining attributes, namely, average surface roughness and material removal rate (MRR). For these two machining qualities, single response optimization was executed to explore the input settings, which could optimize WEDM process ability.

Findings

Optimum parameter settings for average surface roughness and MRR were found to be TON: 115 µs, TOFF: 55 µs, WF: 4 m/min and WT: 6 kgF and TON: 105 µs, TOFF: 60 µs, WF: 4 m/min and WT: 5 kgF.

Originality/value

Process capability analysis constantly checks the process quality through the capability index keep in mind the end goal to guarantee that the items made are complying with the particulars, providing data for product plan and process quality enhancement for designer and engineers, giving the support to decrease the cost of item failures.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 October 2021

Chien-Yi Huang, Christopher Greene, Chao-Chieh Chan and Ping-Sen Wang

This study aims to focus on the passive components of System in Package SiP modules and discusses the geometric pad designs for 01005-sized passive components, the front end design

Abstract

Purpose

This study aims to focus on the passive components of System in Package SiP modules and discusses the geometric pad designs for 01005-sized passive components, the front end design of the hole size and shape of the stencil and the parameters of the stencil sidewall coating, to determine the optimum parameter combination.

Design/methodology/approach

This study plans and conducts experiments, where a L8(27) inner orthogonal array is built to consider the control factors, including a L4(23) outer orthogonal array to consider the noise factor, and the experimental data are analyzed by using the technique for order preference by similarity to ideal solution multi-quality analysis method.

Findings

The results show that the optimum design parameter level combination is that the solder mask opening pad has no solder mask in the lower part of the component, the pad width is 1.1 times that of the component width, the pad length is 1.75 times that of the electrode tip length, the pad spacing is 5 mil, the stencil open area is 90% of the pad area, the stencil opening corner has a 3 mil chamfer angle, and the stencil sidewall is free of nano-coating.

Originality/value

The parameter design and multi-quality analysis method, as proposed in this study, can effectively develop the layout of passive components on a high-density SiP module substrate, to stabilize the process and increase the production yield.

Details

Soldering & Surface Mount Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 May 2019

JiangYou Yu, Le Cao, Hao Fu and Jun Guo

Stencil cleaning is an important operation in solder paste printing process. Frequent cleaning may interrupt printing process and increase idle time, as well as loss for…

Abstract

Purpose

Stencil cleaning is an important operation in solder paste printing process. Frequent cleaning may interrupt printing process and increase idle time, as well as loss for performing cleaning. This paper aims to propose a method to optimize the stencil cleaning time and reduce unnecessary cleaning operations and losses.

Design/methodology/approach

This paper uses a discrete-time, discrete-state homogeneous Markov chain to model the stencil printing performance degradation process, and the quality loss during the stencil printing process is estimated based on this degradation model. A stencil cleaning decision model based on renewal reward theorem is established, and the optimal cleaning time is obtained through a balance between quality loss and the loss on idle time.

Findings

A stencil cleaning decision model for solder paste printing is established, and numerical simulation results show that there exists an optimal stencil cleaning time which minimizes the long-term loss.

Originality/value

Stencil cleaning control is very important for solder paste printing. However, there are very few studies focusing on stencil cleaning control. This research contributes to developing a model to optimize the stencil cleaning time in solder paste printing process.

Details

Soldering & Surface Mount Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 September 2020

Benjamin Chukudi Oji and Sunday Ayoola Oke

There is growing evidence of a knowledge gap in the association of maintenance with production activities in bottling plants. Indeed, insights into how to jointly optimise these…

Abstract

Purpose

There is growing evidence of a knowledge gap in the association of maintenance with production activities in bottling plants. Indeed, insights into how to jointly optimise these activities are not clear. In this paper, two optimisation models, Taguchi schemes and response surface methodology are proposed.

Design/methodology/approach

Borrowing from the “hard” total quality management elements in optimisation and prioritisation literature, two new models were developed based on factor, level and orthogonal array selection, signal-to-noise ratio, analysis of variance and optimal parametric settings as Taguchi–ABC and Taguchi–Pareto. An additional model of response surface methodology was created with analysis on regression, main effects, residual plots and surface plots.

Findings

The Taguchi S/N ratio table ranked planned maintenance as the highest. The Taguchi–Pareto shows the optimal parametric setting as A4B4C1 (28 h of production, 30.56 shifts and 37 h of planned maintenance). Taguchi ABC reveals that the planned maintenance and number of shifts will influence the outcome of production greatly. The surface regression table reveals that the production hours worked decrease at a value of planned maintenance with a decrease in the number of shifts.

Originality/value

This is the first time that joint optimisation for bottling plant will be approached using Taguchi–ABC and Taguchi–Pareto. It is also the first time that response surface will be applied to optimise a unique platform of the bottling process plant.

Details

The TQM Journal, vol. 33 no. 2
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 24 October 2008

George J. Besseris

The purpose of this paper is to propose a simple methodology in solving multi‐response optimisation problems by employing Taguchi methods and a non‐parametric statistical…

1214

Abstract

Purpose

The purpose of this paper is to propose a simple methodology in solving multi‐response optimisation problems by employing Taguchi methods and a non‐parametric statistical technique.

Design/methodology/approach

There is a continuous interest in developing effective and statistically sound multi‐response optimisation methods such that they will provide a firm framework in global product and process improvement. A non‐parametric approach is proposed for the first time in a five‐step methodology that exploits Taguchi's fractional factorial designs and the concept of signal‐to‐noise ratio in data consolidation. The distinct feature of this method is the transformation of each response variable to a single rank variable. The subsequent incorporation of the squared ranks for each of the investigated responses issues a single master‐rank response suitably referred to conveniently as a “Super Rank” (SR) response, thus collapsing all dependent product characteristic information into a single non‐dimensional variable. This SR variable is handled by standard non‐parametric methods such as Wilcoxon's two‐sample, rank sum test or Mann‐Whitney's test eliminating at the same time multi‐distribution effects and small‐sample complications expected for this type of experimentation.

Findings

The proposed methodology is tested on already published data pertaining a design problem in the electronic assembly technology field. The case study requires six‐factor simultaneous optimisation of three response variables. A second example is analyzed by the proposed method focusing on the optimisation of a submerged arc‐welding process problem due to a group of five factors. The Mann‐Whitney's test contrasts the effects of factor settings one‐to‐one on the SR response in order to assign statistical significance to the optimal factor settings.

Research limitations/implications

The application of this methodology is tested at the same time in a real three‐response optimisation case study where each response belongs to different optimisation category.

Practical implications

The methodology outlined in this work eliminates the need for sophisticated multi‐response data handling. In addition, small‐sample considerations and multi‐distribution effects that may be inherent do not restrict the applicability of the method presented herein by this type of experimentation.

Originality/value

This investigation provides a new angle to the published methods of multi‐response optimisation by supporting Taguchi's design of experiments methods through a multi‐ranking scheme that leads to non‐parametric factor resolution.

Details

Journal of Manufacturing Technology Management, vol. 19 no. 8
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 21 September 2020

Rui Xi, Jiangyou Yu, Le Cao, Xiaojiang Zheng and Jun Guo

Most solder paste printers are configured to periodically clean the stencil to maintain printing quality. However, a periodical cleaning control may result in excessive cleaning…

Abstract

Purpose

Most solder paste printers are configured to periodically clean the stencil to maintain printing quality. However, a periodical cleaning control may result in excessive cleaning operations. The purpose of this paper is to develop a control method to schedule stencil cleaning operations appropriately.

Design/methodology/approach

A hybrid failure rate model of the stencil printing process with age reduction factor and failure rate increase factor is presented. A stencil cleaning policy based on system reliability is introduced. An optimization model used to derive the optimal stencil cleaning schedule is provided.

Findings

An aperiodic stencil cleaning control with good adaptability is achieved. A comparative analysis indicates that aperiodic control has better printing system reliability than traditional periodical control under the same cleaning resource consumption.

Originality/value

Periodical cleaning control commonly used in industrial printing process often results in excessive cleaning operations. By incorporating the printing system reliability, this paper develops an aperiodic stencil cleaning control method based on hybrid failure rate model of the stencil printing process. It helps to reduce unnecessary cleaning operations while keeping printing quality stable.

Details

Soldering & Surface Mount Technology, vol. 33 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 24 November 2020

Sakthivel Murugan R. and Vinodh S.

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a…

Abstract

Purpose

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a technique for order preference by similarity to ideal solution (TOPSIS) and analytical hierarchy process (AHP) calculation.

Design/methodology/approach

The optimization of process parameters is gaining a potential role to develop robust products. In this context, this paper presents the parametric optimization of the FDM process using Grey-based Taguchi, TOPSIS and AHP method. The effect of slice height (SH), part fill style (PFS) and build orientation (BO) are investigated with the response parameters machining time, surface roughness and hardness (HD). Multiple objective optimizations were performed with weights of w1 = 60%, w2 = 20% and w3 = 20%. The significance of the process parameters over response parameters is identified through analysis of variance (ANOVA). Comparisons are made in terms of rank order with respect to grey relation grade (GRG), relative closeness and AHP index values. Response table, percentage contributions of process parameters for both GRG and TOPSIS evaluation are done.

Findings

The optimum factor levels are identified using GRG via the Grey Taguchi method and TOPSIS via relative closeness values. The optimized factor levels are SH (0.013 in), PFS (solid) and BO (45°) using GRG and SH (0.013 in), PFS (sparse-low density) and BO (45°) using TOPSIS relative closeness value. SH has higher significance in both Grey relational analysis and TOPSIS which were analysed using ANOVA.

Research limitations/implications

In this research, the multiple objective optimizations were done on an automotive component using GRG, TOPSIS and AHP which showed a 27% similarity in their ranking order among the experiments. In the future, other advanced optimization techniques will be applied to further improve the similarity in ranking order.

Practical implications

The study presents the case of an automotive component, which illustrates practical relevance.

Originality/value

In several research studies, optimization was done on the standard test specimens but not on a real-time component. Here, the multiple objective optimizations were applied to a case automotive component using Grey-based Taguchi and verified with TOPSIS. Hence, an effort has been taken to find optimum process parameters on FDM, for achieving smooth, hardened automotive components with enhanced printing time. The component can be explored as a replacement for the existing product.

1 – 10 of 482