Search results

11 – 20 of over 2000
Article
Publication date: 24 November 2020

Sakthivel Murugan R. and Vinodh S.

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a…

Abstract

Purpose

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a technique for order preference by similarity to ideal solution (TOPSIS) and analytical hierarchy process (AHP) calculation.

Design/methodology/approach

The optimization of process parameters is gaining a potential role to develop robust products. In this context, this paper presents the parametric optimization of the FDM process using Grey-based Taguchi, TOPSIS and AHP method. The effect of slice height (SH), part fill style (PFS) and build orientation (BO) are investigated with the response parameters machining time, surface roughness and hardness (HD). Multiple objective optimizations were performed with weights of w1 = 60%, w2 = 20% and w3 = 20%. The significance of the process parameters over response parameters is identified through analysis of variance (ANOVA). Comparisons are made in terms of rank order with respect to grey relation grade (GRG), relative closeness and AHP index values. Response table, percentage contributions of process parameters for both GRG and TOPSIS evaluation are done.

Findings

The optimum factor levels are identified using GRG via the Grey Taguchi method and TOPSIS via relative closeness values. The optimized factor levels are SH (0.013 in), PFS (solid) and BO (45°) using GRG and SH (0.013 in), PFS (sparse-low density) and BO (45°) using TOPSIS relative closeness value. SH has higher significance in both Grey relational analysis and TOPSIS which were analysed using ANOVA.

Research limitations/implications

In this research, the multiple objective optimizations were done on an automotive component using GRG, TOPSIS and AHP which showed a 27% similarity in their ranking order among the experiments. In the future, other advanced optimization techniques will be applied to further improve the similarity in ranking order.

Practical implications

The study presents the case of an automotive component, which illustrates practical relevance.

Originality/value

In several research studies, optimization was done on the standard test specimens but not on a real-time component. Here, the multiple objective optimizations were applied to a case automotive component using Grey-based Taguchi and verified with TOPSIS. Hence, an effort has been taken to find optimum process parameters on FDM, for achieving smooth, hardened automotive components with enhanced printing time. The component can be explored as a replacement for the existing product.

Article
Publication date: 8 April 2021

Yaolin Lin and Wei Yang

The purpose of this paper is to present a tri-optimization approach to optimize design solutions regarding the building shape and envelope properties considering their…

Abstract

Purpose

The purpose of this paper is to present a tri-optimization approach to optimize design solutions regarding the building shape and envelope properties considering their implications on thermal comfort, visual comfort and building energy consumption (EN). The optimization approach has been applied to obtain the optimal design solutions in five typical cities across all climatic regions of China.

Design/methodology/approach

The method comprises a tri-optimization process with nine main steps to optimize the three objectives (thermal comfort, visual comfort and building EN). The design variables considered are four types of building shape (pyramid, rectangular, cylindrical and dome shape) and different envelope properties (insulation thickness [INS] of external walls/roof, window type [WT] and window-to-envelop surface area ratio [WESR]). The optimization is performed by using the Taguchi and constraint limit method.

Findings

The results show that the optimal design solutions for all climatic regions favor cylindrical shape and triple-layer low-E glazing window. The highest insulation level of 150 mm is preferred in three climatic regions, and the INS of 90 mm is preferred in the other two climate regions. In total, 10% WESR is preferred in all climatic regions, except the mild region. When the constraint limit of lighting intensity requirement by Leadership in Energy and Environmental Design (LEED) is applied, the rectangular shape building is the optimal solution for those with 10% WESR.

Research limitations/implications

The method proposed in the paper is innovative in that it optimizes three different objectives simultaneously in building design with better accuracy and calculation speed.

Practical implications

Building designers can easily follow the proposed design guide in their practice which effectively bridges the gap between theory and practice. The optimal design solutions can provide a more comfortable living environment and yet less EN, which can help achieve the sustainability requirement of green buildings.

Social implications

The solutions presented in the paper can serve as a useful guide for practical building designers which creates economic and commercial impact. In addition, the theory and practical examples of the study can be used by building regulators to improve the energy-efficient building design standard in China.

Originality/value

The research is the first attempt that adopts tri-optimization approach to generate the optimal solutions for building shape and envelope design. The tri-optimization approach can be used by building designers to generate satisfactory design solutions from the architectural viewpoint and meanwhile to find combinations of the building shape and envelope properties that lead to design solutions with optimal building performance.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 July 1995

P. Aravindan, S.R. Devadasan, B.V. Dharmendra and V. Selladurai

Reviews the global status of total quality management (TQM).Emphasizes continuous quality improvement as one of the main pillars ofTQM. Illustrates a part of the research that was…

1867

Abstract

Reviews the global status of total quality management (TQM). Emphasizes continuous quality improvement as one of the main pillars of TQM. Illustrates a part of the research that was carried out to examine Taguchi′s on‐line quality control (TOLQC) methods as the means to effect continuous quality improve‐ment. Describes a case study that was carried out to study the implementation feasibilities of TOLQC methods. Highlights the inferences drawn from this case study which assert the need for managerial approach rather than mere technical computations for successful implementation. Insists on intensified training and awareness programmes on the implementation strategies of these methods to attain the ultimate goals of TQM.

Details

International Journal of Operations & Production Management, vol. 15 no. 7
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 4 June 2021

Sıtkı Akıncıoğlu

The purpose of this study was to optimize the surface roughness (Ra), delamination damage at the hole entrance (FdT) and at the hole exit (FdB) and kerf angle (K) in the drilling…

Abstract

Purpose

The purpose of this study was to optimize the surface roughness (Ra), delamination damage at the hole entrance (FdT) and at the hole exit (FdB) and kerf angle (K) in the drilling of aramid fiber-reinforced polymer (AFRP) composite material using abrasive water jet (AWJ) machining.

Design/methodology/approach

The AFRP composite was produced by the vacuum infusion method. The drilling experiments were performed on an AWJ machine using a three-axis computerized numerical control system. Machine processing parameters were determined as water pressure (2,000, 3,000 and 4,000 bar), stand-off distance (2, 4 and 6 mm) and traverse feed rate (150, 250 and 350 mm/min). Optimization of processing parameters in the drilling experiments was carried out according to the Taguchi L27 (33) orthogonal array. In addition, gray relational analysis (GRA) was used to analyze the complex uncertainty affecting the results.

Findings

Results of the drilling operations demonstrated that water pressure (P) was the most effective parameter, with 65.3%, 65.2%, 49.8% and 52.1% contribution rates for Ra, FdT, FdB and K, respectively.

Practical implications

Reliable results have been obtained with Taguchi-based GRA while drilling AFRP composite material using AWJ. Significant results have been achieved to increase the hole quality in the drilling of AFRP composite material.

Originality/value

The new approach is to present more detailed analysis by using Taguchi method and multi-decision Taguchi-based gray relation analysis in AFRP composite material drilling using AWJ. Thus, time and experiment costs are saved.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 June 2017

M.P. Jenarthanan, R. Gokulakrishnan, B. Jagannaath and P. Ganesh Raj

The purpose of this paper is to find out the optimum machining parameters using Taguchi technique with principal component analysis (PCA) during end milling of GFRP composites.

Abstract

Purpose

The purpose of this paper is to find out the optimum machining parameters using Taguchi technique with principal component analysis (PCA) during end milling of GFRP composites.

Design/methodology/approach

In multi-objective optimization, weight criteria of each objective are important for producing better and accurate solutions. This method has been employed for simultaneous minimization of surface roughness, cutting force and delamination factor. Experiments were planned using Taguchi’s orthogonal array with the machining parameters, namely, helix angle of the end mill cutter, spindle speed, feed rate and depth of cut were optimized with considerations of multiple response characteristics, including machining force, surface roughness and delamination as the responses. PCA is adopted to find the weight factors involved for all objectives. Finally analysis of variance concept is employed on multi-SN ratio to find out the relative significance of machining parameter in terms of their percentage contribution.

Findings

The multi-SN ratio is achieved by the product of weight factor and SN ratio to the performance characteristics in the utility concept. The results show that a combination of machining parameters for the optimized results has helix angle of 35°, machining speed of 4,000 m/min, feed rate of 750 mm/rev and depth of cut of 2.0 mm.

Originality/value

Effect of milling of GFRP composites on delamination factor, surface roughness and machining force with various helix angle solid carbide end mill has not been analysed yet using PCA techniques.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 November 1999

Thomas Lofthouse

Taguchi defines quality in a negative manner as “the loss imparted to society from the time the product is shipped”. Explains the concept and the approach to quality improvement…

2286

Abstract

Taguchi defines quality in a negative manner as “the loss imparted to society from the time the product is shipped”. Explains the concept and the approach to quality improvement that arises. This approach involves statistical process control and can be daunting but the paper stresses and makes clear the underlying conceptual framework of a methodology for quality improvement and process robustness.

Details

Work Study, vol. 48 no. 6
Type: Research Article
ISSN: 0043-8022

Keywords

Article
Publication date: 30 September 2020

Gökhan Sur and Ömer Erkan

Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the…

Abstract

Purpose

Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the drill geometry and cutting parameters to improve the surface quality of CFRP composite material. In this study, CFRP plates were drilled with uncoated carbide drill bits with standard and step geometry. Thus, the effects of standard and step drill bits on surface quality have been examined comparatively. In addition, optimum output parameters were determined by Taguchi, ANOVA and multiple decision-making methods.

Design/methodology/approach

Drill bit point angles were selected as 90°, 110° and 130°. In cutting parameters, three different cutting speeds (25, 50 and 75 m/min) and three different feeds (0.1, 0.15 and 0.2 mm/rev) were determined. L18 orthogonal sequence was used with Taguchi experimental design. Three important output parameters affecting the surface quality are determined as thrust force, surface roughness and delamination factor. For each output parameter, the effects of drill geometry and cutting parameters were evaluated. Input parameters affecting output parameters were analyzed using the ANOVA method. Output parameters were estimated by creating regression equations. Weights were determined using the analytic hierarchy process (AHP) method, and multiple output parameters were optimized using technique for order preference by Similarity to An ideal solution (TOPSIS).

Findings

It has been determined from the experimental results that step drills generate smaller thrust forces than standard drills. However, it has been determined that it creates greater surface roughness and delamination factor. From the Taguchi analysis, the optimum input parameters for Fz step tool geometry, 90° point angle, 75 m/min cutting speed and 0.1 mm/rev feed. For Fd, are standard tool geometry, 90° point angle, 25 m/min cutting speed and 0.1 mm/rev feed and for Ra, are standard tool geometry, 130° point angle, 25 m/min cutting speed and 0.1 mm/rev feed. ANOVA analysis determined that the most important parameter on Fd is the tip angle, with 56.33%. The most important parameter on Ra and Fz was found to be 40.53% and 77.06% tool geometry, respectively. As a result of the optimization with multiple criteria decision-making methods, the test order that gave the best surface quality was found as 4–1-9–5-8–17-2–13-6–16-18–15-11–10-3–12-14. The results of the test number 4, which gives the best surface quality, namely, the thrust force is 91.86 N, the surface roughness is 0.75 µm and the delamination factor is 1.043. As a result of experiment number 14, which gave the worst surface quality, the thrust force was 149.88 N, the surface roughness was 3.03 µm and the delamination factor was 1.163.

Practical implications

Surface quality is an essential parameter in the drilling of CFRP plates. Cutting tool geometry comes first among the parameters affecting this. Therefore, different cutting tool geometries are preferred. A comparison of these cutting tools is discussed in detail. On the other hand, thrust force, delamination factor and surface roughness, which are the output parameters that determine the surface quality, have been optimized using the TOPSIS and AHP method. In this way, this situation, which seems complicated, is presented in a plain and understandable form.

Originality/value

In the experiments, cutting tools with different geometries are included. Comparatively, its effects on surface quality were examined. The hole damage mechanism affecting the surface quality is discussed in detail. The results were optimized by evaluating Taguchi, ANOVA, TOPSIS and AHP methods together.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 November 2010

Wu‐Lin Chen, Chin‐Yin Huang and Chi‐Wei Hung

The purpose of this paper is to find the optimal values of process parameters in injection molding when both warpage and shrinkage are minimized.

1022

Abstract

Purpose

The purpose of this paper is to find the optimal values of process parameters in injection molding when both warpage and shrinkage are minimized.

Design/methodology/approach

In finding the optimal values, advantages of finite element software, Moldflow, and dual response surface method (dual RSM) combined with the nonlinear programming technique by Lingo are exploited. Considering the nine process parameters, injection time, injection pressure, packing pressure, packing time, cooling time, coolant temperature, mold‐open time, melting temperature and mold surface temperature, a series of mold analyses are performed to exploit the warpage and shrinkage data. In the analyses, warpage is considered the primary response, whereas shrinkage is the secondary response.

Findings

The results indicate that dual RSM combined with the nonlinear programming technique can outperform the Taguchi's optimization method. The optimal process values are also confirmed by re‐running experiments on Moldflow. Additionally, an auxiliary dual RSM model is proposed to search for a better result based on the given findings by dual RSM at the cost of running extra experiments. Based on dual RSM, a multiple objective optimization for the whole plastic product is finally suggested to integrate the dual RSM models that are developed for the individual nodes or edges.

Originality/value

This paper proposes a new method to find the optimal process for plastic injection molding.

Details

Engineering Computations, vol. 27 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2000

Tolga Taner and Jiju Antony

Diagnostic tests are widely used in many areas of modern technological society, but they are of particular importance in medicine, where early and accurate diagnosis can decrease…

Abstract

Diagnostic tests are widely used in many areas of modern technological society, but they are of particular importance in medicine, where early and accurate diagnosis can decrease morbidity and mortality rates of disease. How the quality of diagnostic information and decisions should be measured in a meaningful way has become increasingly important in recent years as an abundance of new diagnostic tests have been introduced. A number of seemingly independent indices are studied for evaluating diagnostic performance such as the receiver operating characteristic curves and signal‐to‐noise ratios. Designing robustness into diagnostic tests can only be achieved by minimizing the variation in the total number of false diagnosis. This article has undertaken a comparison of signal‐to‐noise ratios developed by Taguchi in quality engineering and system performance in manufacturing industry. A hybrid is also computed and its relevance to physicians as an efficient assessment method is proposed and strongly encouraged.

Details

International Journal of Health Care Quality Assurance, vol. 13 no. 7
Type: Research Article
ISSN: 0952-6862

Keywords

Article
Publication date: 1 April 2001

Jiju Antony, Steve Warwood, Kiran Fernandes and Hefin Rowlands

Experimental design (ED) is a powerful technique which involves the process of planning and designing an experiment so that appropriate data can be collected and then analysed by…

2184

Abstract

Experimental design (ED) is a powerful technique which involves the process of planning and designing an experiment so that appropriate data can be collected and then analysed by statistical methods, resulting in objective and valid conclusions. It is an alternative to the traditional inefficient and unreliable one‐factor‐at‐a‐time approach to experimentation, where an experimenter generally varies one factor or process parameter at a time keeping all other factors at a constant level. This paper presents a step‐by‐step approach to the optimisation of a production process (of retaining a metal ring in a plastic body by a hot forming method) through the utilisation of Taguchi methods of experimental design. The experiment enabled the behaviour of the system to be understood by the engineering team in a short period of time and resulted in significantly improved performance (with the opportunity to design further experiments for possible greater improvements).

Details

Work Study, vol. 50 no. 2
Type: Research Article
ISSN: 0043-8022

Keywords

11 – 20 of over 2000