Search results

1 – 4 of 4
Open Access
Article
Publication date: 23 January 2023

Md.Tanvir Ahmed, Hridi Juberi, A.B.M. Mainul Bari, Muhommad Azizur Rahman, Aquib Rahman, Md. Ashfaqur Arefin, Ilias Vlachos and Niaz Quader

This study aims to investigate the effect of vibration on ceramic tools under dry cutting conditions and find the optimum cutting condition for the hardened steel machining…

Abstract

Purpose

This study aims to investigate the effect of vibration on ceramic tools under dry cutting conditions and find the optimum cutting condition for the hardened steel machining process in a computer numerical control (CNC) lathe machine.

Design/methodology/approach

In this research, an integrated fuzzy TOPSIS-based Taguchi L9 optimization model has been applied for the multi-objective optimization (MOO) of the hard-turning responses. Additionally, the effect of vibration on the ceramic tool wear was investigated using Analysis of Variance (ANOVA) and Fast Fourier Transform (FFT).

Findings

The optimum cutting conditions for the multi-objective responses were obtained at 98 m/min cutting speed, 0.1 mm/rev feed rate and 0.2 mm depth of cut. According to the ANOVA of the input cutting parameters with respect to response variables, feed rate has the most significant impact (53.79%) on the control of response variables. From the vibration analysis, the feed rate, with a contribution of 34.74%, was shown to be the most significant process parameter influencing excessive vibration and consequent tool wear.

Research limitations/implications

The MOO of response parameters at the optimum cutting parameter settings can significantly improve productivity in the dry turning of hardened steel and control over the input process parameters during machining.

Originality/value

Most studies on optimizing responses in dry hard-turning performed in CNC lathe machines are based on single-objective optimization. Additionally, the effect of vibration on the ceramic tool during MOO of hard-turning has not been studied yet.

Details

International Journal of Industrial Engineering and Operations Management, vol. 5 no. 1
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 22 October 2019

Li Xuemei, Yun Cao, Junjie Wang, Yaoguo Dang and Yin Kedong

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey

3186

Abstract

Purpose

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey systems in marine economics is gaining importance. The purpose of this paper is to summarize and review literature on grey models, providing new directions in their application in the marine economy.

Design/methodology/approach

This paper organized seminal studies on grey systems published by Chinese core journal database – CNKI, Web of Science and Elsevier from 1982 to 2018. After searching the aforementioned database for the said duration, the authors used the CiteSpace visualization tools to analyze them.

Findings

The authors sorted the studies according to their countries/regions, institutions, keywords and categories using the CiteSpace tool; analyzed current research characteristics on grey models; and discussed their possible applications in marine businesses, economy, scientific research and education, marine environment and disasters. Finally, the authors pointed out the development trend of grey models.

Originality/value

Although researches are combining grey theory with fractals, neural networks, fuzzy theory and other methods, the applications, in terms of scope, have still not met the demand. With the increasingly in-depth research in marine economics and management, international marine economic research has entered a new period of development. Grey theory will certainly attract scholars’ attention, and its role in marine economy and management will gain considerable significance.

Details

Marine Economics and Management, vol. 2 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 14 August 2018

Xuemei Li, Ya Zhang and Kedong Yin

The traditional grey relational models directly describe the behavioural characteristics of the systems based on the sample point connections. Few grey relational models can…

Abstract

Purpose

The traditional grey relational models directly describe the behavioural characteristics of the systems based on the sample point connections. Few grey relational models can measure the dynamic periodic fluctuation rules of the objects, and most of these models do not have affinities, which results in instabilities of the relational results because of sequence translation. The paper aims to discuss these issues.

Design/methodology/approach

Fourier transform functions are used to fit the system behaviour curves, redefine the area difference between the curves and construct a grey relational model based on discrete Fourier transform (DFTGRA).

Findings

To verify its validity, feasibility and superiority, DFTGRA is applied to research on the correlation between macroeconomic growth and marine economic growth in China coastal areas. It is proved that DFTGRA has the superior properties of affinity, symmetry, uniqueness, etc., and wide applicability.

Originality/value

DFTGRA can not only be applied to equidistant and equal time sequences but also be adopted for non-equidistant and unequal time sequences. DFTGRA can measure both the global relational degree and the dynamic correlation of the variable cyclical fluctuation between sequences.

Details

Marine Economics and Management, vol. 1 no. 1
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 10 June 2021

Ahm Shamsuzzoha, Sujan Piya and Mohammad Shamsuzzaman

This study aims to propose a method known as the fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS) for complex project selection in…

3263

Abstract

Purpose

This study aims to propose a method known as the fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS) for complex project selection in organizations. To fulfill study objectives, the factors responsible for making a project complex are collected through literature review, which is then analyzed by fuzzy TOPSIS, based on three decision-makers’ opinions.

Design/methodology/approach

The selection of complex projects is a multi-criteria decision-making (MCDM) process for global organizations. Traditional procedures for selecting complex projects are not adequate due to the limitations of linguistic assessment. To crossover such limitation, this study proposes the fuzzy MCDM method to select complex projects in organizations.

Findings

A large-scale engine manufacturing company, engaged in the energy business, is studied to validate the suitability of the fuzzy TOPSIS method and rank eight projects of the case company based on project complexity. Out of these eight projects, the closeness coefficient of the most complex project is found to be 0.817 and that of the least complex project is found to be 0.274. Finally, study outcomes are concluded in the conclusion section, along with study limitations and future works.

Research limitations/implications

The outcomes from this research may not be generalized sufficiently due to the subjectivity of the interviewers. The study outcomes support project managers to optimize their project selection processes, especially to select complex projects. The presented methodology can be used extensively used by the project planners/managers to find the driving factors related to project complexity.

Originality/value

The presented study deliberately explained how complex projects in an organization could be select efficiently. This selection methodology supports top management to maintain their proposed projects with optimum resource allocations and maximum productivity.

Details

Journal of Global Operations and Strategic Sourcing, vol. 14 no. 3
Type: Research Article
ISSN: 2398-5364

Keywords

Access

Only content I have access to

Year

Content type

1 – 4 of 4