Search results

1 – 10 of 49
Article
Publication date: 26 February 2024

Madhavarao Singuru, Kesava Rao V.V.S. and Rama Bhadri Raju Chekuri

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix…

Abstract

Purpose

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix composite (HMMC). HMMCs are prepared with 2 Wt.% graphite and 4 Wt.% zirconium dioxide reinforced with aluminium alloy 7475 (GZR-AA7475) composite by using the stir casting method. The objective is to enhance the mechanical properties of the material while preserving its unique features. WCEDM with a 0.18 mm molybdenum wire electrode is used for machining the composite.

Design/methodology/approach

To conduct experimental studies, a Taguchi L27 orthogonal array was adopted. Input variables such as peak current (Ip), pulse-on-time (TON) and flushing pressure (PF) were used. The effect of process parameters on the output responses, such as material removal rate (MRR), surface roughness rate (SRR) and wire wear ratio (WWR), were investigated. The grey relational analysis (GRA) is used to obtain the optimal combination of the process parameters. Analysis of variance (ANOVA) was also used to identify the significant process parameters affecting the output responses.

Findings

Results from the current study concluded that the optimal condition for grey relational grade is obtained at TON = 105 µs, Ip = 100 A and PF = 90 kg/cm2. Peak current is the most prominent parameter influencing the MRR, whereas SRR and WRR are highly influenced by flushing pressure.

Originality/value

Identifying the optimal process parameters in WCEDM for machining of GZR-AA7475 HMMC. ANOVA and GRA are used to obtain the optimal combination of the process parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 November 2022

Raghuraj Panwar and Pankaj Chandna

This paper aims to accomplish friction stir welding (FSW) of Al–Li alloy AA8090 to determine optimal settings of the process parameters for higher tensile strength and higher…

142

Abstract

Purpose

This paper aims to accomplish friction stir welding (FSW) of Al–Li alloy AA8090 to determine optimal settings of the process parameters for higher tensile strength and higher micro-hardness (MH) to achieve the objective of adequate butt-joint strength.

Design/methodology/approach

An empirical relation is implemented to govern the utmost influence parameters, i.e. tool rotation speed (TRS), tool transverse speed (TTS) and dwell time (DT). Taguchi grey relational analysis (GRA) was applied for multi-response optimization of response parameters. The grey relational grades (GRs) have been calculated for both the responses MH and ultimate tensile strength to get optimal parametric settings. The variance test has been performed to check the adequacy of the model.

Findings

The Taguchi L9 orthogonal array design was used in establishing the relation between input parameter and output parameter (tensile and MH). TTS and DT have been predicted to be the two most important parameters that influence the extreme quality features of joints by using friction stir welding. Scanning electron microscopy fractography shows the ductile failure of the welded joints.

Originality/value

The experimental trials provided the followings results, maximum ultimate tensile strength (UTS) of 219 MPa and MH 107.1 HV under 1,400 rpm of TRS, 40 mm/min of TTS and 8 s of DT founded the optimum value through GRA.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 April 2023

Govind Waghmare and Rachayya Rudramuni Arakerimath

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet…

Abstract

Purpose

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet strength and make a low-cost model of the multi-dimpling for sheet metal industries. To create an empirical expression linking process performance to different input factors, the percentage contribution of these elements is also calculated.

Design/methodology/approach

Taguchi grey relational analysis is used to apply a new effective strategy to experimental data in order to optimize the dimpling process parameters while taking into account several performance factors and low-cost model. In addition, a statistical method called ANOVA is used to ensure that the results are adequate. The optimal process parameters that generate improved mechanical properties are determined via grey relational analysis (GRA). Every level of the process variables, a response table and a grey relational grade (GRG) has been established.

Findings

The factors created for experiment number 2 with 0.5 mm as the sheet thickness, 2 mm dimple diameter, 0.5 mm dimple depth, 8 mm dimples spacing and the material of SS 304 were allotted rank one, which belonged to the optimal parameter values giving the greatest value of GRG.

Practical implications

The study demonstrates that the process parameters of any dimple sheet manufacturing industry can be optimized, and the effect of process parameters can be identified.

Originality/value

The proposed low-cost model is relatively economical and readily implementable to small- and large-scale industries using newly developed multi-dimpling multi-punch and die.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 May 2023

Taraprasad Mohapatra and Sudhansu Sekhar Mishra

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel…

Abstract

Purpose

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel engine. In this study, three types of test fuels are taken and tested in a variable compression ratio diesel engine (compression ignition). The fuels used are conventional diesel fuel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3). The effect of bioethanol and nano-particles on performance, emission and cost-effectiveness is investigated at different load and compression ratios (CRs). The optimum performance and lower emission of the engine are evaluated and compared with other optimization methods.

Design/methodology/approach

The test engine is run by diesel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3) in three different loadings (4 kg, 8 kg and 12 kg) and CR of 14, 16 and 18, respectively. The optimum value of energy efficiency, exergy efficiency, NOX emission and relative cost variation are determined against the input parameters using Taguchi-Grey method and confirmed by response surface methodology (RSM) technique.

Findings

Using Taguchi-Grey method, the maximum energy and exergy efficiency, minimum % relative cost variation and NOX emission are 24.64%, 59.52%, 0 and 184 ppm, respectively, at 4 kg load, 18 CR and fuel type of nano-fuel. Using RSM technique, maximum energy and exergy efficiency are 24.8% and 62.9%, and minimum NOX emission and % cost variation are 208.4 ppm and –6.5, respectively, at 5.2 kg load, 18 CR and nano-fuel. The RSM is suggested as the most appropriate technique for obtaining maximum energy and exergy efficiency, and minimum % relative cost; however, for lowest possible NOX emission, the Taguchi-Grey method is the most appropriate.

Originality/value

Waste rice straw is used to produce bioethanol. 4-E analysis, i.e. energy, exergy, emission and economic analysis, has been carried out, optimized and compared.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 July 2023

Zulfiqar Ali Raza, Aisha Rehman, Faiza Anwar and Naseer Ahmad

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of…

35

Abstract

Purpose

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of greige viscose fabric for potential industrial applications. The removal of starches is an essential step before processing the fabric for dyeing and finishing operations. The authors tend to accomplish it in eco-friendly and sustainable ways.

Design/methodology/approach

The experiments were designed under the Taguchi approach, and the results were analyzed using grey relational analysis to optimize the process. The textile properties of absorbency, reducing sugars, bending length, weight loss, Tegawa rating and tensile strength were assessed using the standard protocols. The control and optimized viscose specimens were investigated for certain surface chemical properties using advanced analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA).

Findings

The results demonstrate that the Fe2+ concentration and process time were the main influencing factors in the amylolytic desizing of viscose fabric. The optimized process conditions were found to be 0.1 mm Fe2+ ions, 3 mm SDS, 80°C, 7 pH and 30 min process time. The copresence of Fe2+ ions and SDS promoted the biodesizing of viscose fabric. The SEM, Fourier transform infrared spectroscopy, XRD and TGA results demonstrated that the sizing agent has efficiently been removed from the fabric surface.

Practical implications

The amylase desizing of viscose fabric in the presence of certain metal ions and surfactants is a significant subject as the enzyme may face them due to their prevalence in the water systems. This could also support the biodesizing and bioscouring operations to be done in one bath, thus making the textile pretreatment process both economical and environmentally sustainable.

Originality/value

The authors found no report on the biodesizing of viscose fabric in the copresence of Fe2+ ions and the SDS surfactant under statistical multiresponse optimization. The biodesized viscose fabric has been investigated using both conventional and analytical approaches.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 December 2022

Bhanupratap Gaur, Samrat Sagar, Chetana M. Suryawanshi, Nishant Tikekar, Rupesh Ghyar and Ravi Bhallamudi

Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical…

Abstract

Purpose

Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical properties. This study aims to demonstrate the effects of annealing on the physio-mechanical properties to select optimal process parameters.

Design/methodology/approach

Test samples were fabricated using the Taguchi L9 approach by varying parameters such as laser power (LP), laser velocity (LV) and hatch distance (HD) to three levels. Physical and mechanical test results were used to optimize the parameters for fabricating as-built and annealed implants separately using Grey relational analysis. An optimized parameter set was used for fabricating biological test samples, followed by animal testing to validate the qualified parameters.

Findings

Two optimized sets of process parameters (LP = 100 W, LV = 500 mm/s and HD = 0.08 mm; and LP = 300 W, LV = 1,350 mm/s and HD = 0.08 mm) are suggested suitable for implant fabrication regardless of the inclusion of annealing in the manufacturing process. The absence of any necrosis or reaction on the local tissues after nine weeks validated the suitability of the parameter set for implants.

Practical implications

To help PCI manufacturers in parameter selection and to exclude annealing from the manufacturing process for faster implant delivery.

Originality/value

To the best of the authors’ knowledge, this is probably a first attempt that suggests LPBF parameters that are independent of inclusion of annealing in implant fabrication process.

Article
Publication date: 28 February 2024

Ram Niwas and Vikas Kumar

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and…

Abstract

Purpose

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and percentage elongation (EL) of AZ91D/AgNPs/TiO2 hybrid composite fabricated by friction stir processing.

Design/methodology/approach

An empirical model has been developed to govern crucial influencing parameters, namely, rotation speed (RS), tool transverse speed (TS), number of passes (NPS) and reinforcement fraction (RF) or weight percentage. Box Behnken design (BBD) with four input parameters and three levels of each parameter was used to design the experimental work, and analysis of variance (ANOVA) was used to check the acceptability of the developed model. Desirability function analysis (DFA) for a multiresponse optimization approach is integrated with response surface methodology (RSM). The individual desirability index (IDI) was calculated for each response, and a composite desirability index (CDI) was obtained. The optimal parametric settings were determined based on maximum CDI values. A confirmation test is also performed to compare the actual and predicted values of responses.

Findings

The relationship between input parameters and output responses (UTS, YS, and EL) was investigated using the Box-Behnken design (BBD). Silver nanoparticles (AgNPs) and nano-sized titanium dioxide (TiO2) enhanced the ultimate tensile strength and yield strength. It was observed that the inclusion of AgNPs led to an increase in ductility, while the increase in the weight fraction of TiO2 resulted in a decrease in ductility.

Practical implications

AZ91D/AgNPs/TiO2 hybrid composite finds enormous applications in biomedical implants, aerospace, sports and aerospace industries, especially where lightweight materials with high strength are critical.

Originality/value

In terms of optimum value through desirability, the experimental trials yield the following results: maximum value of UTS (318.369 MPa), maximum value of YS (200.120 MPa) and EL (7.610) at 1,021 rpm of RS, 70 mm/min of TS, 4 NPS and level 3 of RF.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 August 2023

Raghuraj Panwar and Pankaj Chandna

This study aims to determine the effect of different friction stir welding (FSW) parameters on mechanical and metallurgical characteristics of aviation-grade AA8090 alloy joints.

68

Abstract

Purpose

This study aims to determine the effect of different friction stir welding (FSW) parameters on mechanical and metallurgical characteristics of aviation-grade AA8090 alloy joints.

Design/methodology/approach

Response surface methodology with central composite design is used to design experiments. The mechanical and microstructure characteristics of the weld joints have been studied through a standardized method, and the influence of threaded pins on the joint microstructure has also been assessed.

Findings

From a desirability strategy, the optimum parameters setting of the friction stir welding was the tool rotational speed (TRS) of 800, 1,100 and 1,400 rpm; tool traverse speed (TTS) of 20, 30 and 40 mm/min; and tilt angle 1°, 2° and 3° with different tool pin profiles, i.e. cylindrical threaded (CT), square threaded and triangular threaded (TT), for achieving the maximum tensile strength, yield strength (YTS) and % elongation as an output parameter. The TRS speed was the highest weld joint characteristics influencing parameter. Peak tensile strength (378 MPa), percentage elongation (10.1) and YTS (308 MPa) were observed for the optimized parametric value of TRS-1,400, TTS-40 mm/min and TA (3°) along with CT pin profile. Microstructure study of the welded surface was achieved by using scanning electron microscope of output parameters. When the tool rotation speed, tool transverse speed, tilt angle and tool profile are set to moderately optimal levels, a mixed mode of ductile and brittle fracture has been seen during the microstructure analysis of the welded joint. This has been aided by the material’s plastic deformation and the small cracks surrounding the weld zone.

Originality/value

From the reported literature, it has been observed that limited work has been reported on aviation-grade AA8090 alloys. Further thermal behavior of welded joints has also been observed in this experimental work.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 May 2023

Amit Rana, Sandeep Deshwal, Rajesh and Naveen Hooda

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these…

Abstract

Purpose

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these parameters is uttermost requirement and aim of this study to increase the suitability of FSW in different manufacturing industries. Hence, the input parameters are optimized through different soft computing methods to increase the considered objective in this study.

Design/methodology/approach

In this research, ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of FSW prepared butt joints of AA6061 and AA5083 Aluminium alloys materials are investigated as per American Society for Testing and Materials (ASTM E8-M04) standard. The FSW joints were prepared by changing the three input process parameters. To develop experimental run order design matrix, rotatable central composite design strategy was used. Furthermore, genetic algorithm (GA) in combination (Hybrid) with response surface methodology (RSM), artificial neural network (ANN), i.e. RSM-GA, ANN-GA, is exercised to optimize the considered process parameters.

Findings

The maximum value of UTS, YS and EL of test specimens on universal testing machine was measured as 264 MPa, 204 MPa and 14.41%, respectively. The most optimized results (UTS = 269.544 MPa, YS = 211.121 MPa and EL = 17.127%) are obtained with ANN-GA for the considered objectives.

Originality/value

The optimization of input parameters to increase the output objective values using hybrid soft computing techniques is unique in this research paper. The outcomes of this study will help the FSW using manufacturing industries to choose the best optimized parameters set for FSW prepared butt joint with improved mechanical properties.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 2024

Diana Oliveira, Helena Alvelos and Maria J. Rosa

Quality 4.0 is being presented as the new stage of quality development. However, its overlying concept and rationale are still hard to define. To better understand what different…

Abstract

Purpose

Quality 4.0 is being presented as the new stage of quality development. However, its overlying concept and rationale are still hard to define. To better understand what different authors and studies advocate being Quality 4.0, a systematic literature review was undertaken on the topic. This paper presents the results of such review, providing some avenues for further research on quality management.

Design/methodology/approach

The documents for the systematic literature review have been searched on the Scopus database, using the search equation: [TITLE-ABS-KEY (“Quality 4.0”) OR TITLE-ABS-KEY (Quality Management” AND (“Industry 4.0” OR “Fourth Industr*” OR i4.0))]. Documents were filtered by language and by type. Of the 367 documents identified, 146 were submitted to exploratory content analysis.

Findings

The analyzed documents essentially provide theoretical discussions on what Quality 4.0 is or should be. Five categories have emerged from the content analysis undertaken: Industry 4.0 and the Rise of a New Approach to Quality; Motivations, Readiness Factors and Barriers to a Quality 4.0 Approach; Digital Quality Management Systems; Combination of Quality Tools and Lean Methodologies and Quality 4.0 Professionals.

Research limitations/implications

It was hard to find studies reporting how quality is actually being managed in organizations that already operate in the Industry 4.0 paradigm. Answers could not be found to questions regarding actual practices, methodologies and tools being used in Quality 4.0 approaches. However, the research undertaken allowed to identify in the literature different ways of conceptualizing and analyzing Quality 4.0, opening up avenues for further research on quality management in the Industry 4.0 era.

Originality/value

This paper offers a broad look at how quality management is changing in response to the affirmation of the Industry 4.0 paradigm.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 10 of 49