Search results

1 – 10 of 374
Article
Publication date: 11 October 2018

Zahra Shahriyari and Khalilollah Gheisari

In this study, corrosion behavior of X53CrMnNiN219 austenitic stainless steel (SS) and X45CrSi93 martensitic SS, as well as the galvanic corrosion produced by coupling of these…

Abstract

Purpose

In this study, corrosion behavior of X53CrMnNiN219 austenitic stainless steel (SS) and X45CrSi93 martensitic SS, as well as the galvanic corrosion produced by coupling of these dissimilar alloys, are evaluated in a 3.5 Wt.% NaCl solution at temperature 25°C ± 1°C.

Design/methodology/approach

The corrosion parameters were estimated through a series of electrochemical tests, including Tafel polarization, electrochemical impedance spectroscopy (EIS), and zero-resistance ammeter (ZRA) technique.

Findings

The results of polarization measurements indicate that the value of corrosion current in the galvanic pair is slightly higher than that of both the austenitic and martensitic SS during the initial time of immersion in the chloride solution, which is an indication of compatibility of members in the couple. The galvanic current density measured by ZRA technique shows negative values throughout the test; accordingly, the martensitic SS acts as anode of the pair and corrodes preferentially. Localization index values are limited to the mixed corrosion process, showing relative susceptibility of the martensitic alloy to the uniform and localized corrosion (pitting) due to chloride ions.

Originality/value

The originality is the evaluation of galvanic corrosion susceptibility of X53CrMnNiN219 and X45CrSi93 SSs in chloride solution by the various electrochemical methods consisting of Tafel polarization, EIS, and (ZRA) technique. To our knowledge, no work has been reported on this issue for these chemical compositions under this condition up to now.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 May 2018

Khaoula Nasr, Michele Fedel, Khaled Essalah, Flavio Deflorian and Nebil Souissi

This study aims to investigate the inhibition performance of an aqueous extract of Matricaria recutita chamomile on the corrosion of S235JR steel in 0.5 M NaCl by using…

Abstract

Purpose

This study aims to investigate the inhibition performance of an aqueous extract of Matricaria recutita chamomile on the corrosion of S235JR steel in 0.5 M NaCl by using electrochemical impedance spectroscopy (EIS) and polarization measurements.

Design/methodology/approach

The inhibition performance was investigated using EIS and polarization measurements. Surface analysis demonstrates the presence of a protective layer on the steel surface in the presence of the extract. Quantum chemical parameters calculated for the molecules contained in the aqueous extract are interpreted to predict the corrosion inhibition efficiency of the considered extract.

Findings

The inhibition efficiency of chamomile aqueous extract for S235JR steel increases with increasing amounts of plant concentration and with an increase in the immersion time. The optimal inhibition efficiency of chamomile extract, 98.90 per cent, was achieved for S235JR steel when immersed in 15 per cent v/v of extract concentration for 2 h. The surface analysis in the absence and presence of the chamomile extract confirmed the formation of a protective layer on steel surface. The quantum chemical calculations allowed to explain the great inhibition efficiency values by interpreting the calculated quantum parameters.

Originality/value

This is the first study carrying out an experimental and theoretical investigation on M. recutita chamomile as a green corrosion inhibitor, with interesting potential industrial applications.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 August 2014

Martin C. Fatah, Mokhtar C. Ismail and Bambang Ari-Wahjoedi

– The purpose of this work was to study the corrosion behaviour of X52 steel in the presence of sulphite.

Abstract

Purpose

The purpose of this work was to study the corrosion behaviour of X52 steel in the presence of sulphite.

Design/methodology/approach

The study was conducted in abiotic solutions containing species typical of sulphate-reducing bacteria (SRB) metabolism. Electrochemical techniques, i.e. linear polarization resistance (LPR), potentiodynamic and electrochemical impedance spectroscopy (EIS), were used to observe the corrosion kinetics and mechanism of X52 steel in the solution containing sulphite. Field emission scanning electron microscope (FESEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the corrosion products.

Findings

LPR and EIS results showed that the addition of sulphite ions to the abiotic solutions increased the rate of X52 steel corrosion. The increase of corrosion rate was due to the increase in the cathodic reaction in the presence of sulphite. It was also observed that sulphite thinned the protective FeS film and caused corrosive species to adsorb on the surface, resulting in an increase in corrosion rate.

Originality/value

This paper discusses the effects of sulphite on the corrosion behaviour of X52 steel in abiotic solution containing species typically produced by the SRB-type metabolic process. Irrespective of the presence of sulphide, sulphite is produced by SRB during their metabolic process. However, as far as is known, no published papers are available that discuss the effect of the presence of sulphite as one of the metabolic products of SRB.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 1998

T. Vasudevan, B. Muralidharan, S. Muralidharan and S. Venkatakrishna Iyer

The influence of pyridinium chloride (PC) and n‐hexa decyl pyridinium chloride (HDPC) on the corrosion of mild steel in 5N HCl and 5N H2SO4 has been studied using techniques such…

314

Abstract

The influence of pyridinium chloride (PC) and n‐hexa decyl pyridinium chloride (HDPC) on the corrosion of mild steel in 5N HCl and 5N H2SO4 has been studied using techniques such as weight loss and gasometric measurements, potentiodynamic polarisation studies, linear polarisation studies and small amplitude cyclic voltametric studies. It is found that HDPC is more inhibitive than PC and both the compounds perform better in H2SO4. Polarisation studies reveal that PC behaves as an anodic inhibitor in H2SO4 and as a mixed inhibitor in HCl. Measurements of values of polarisation resistance (Rp) and double layer capacitance (Cdl) in the presence of these compounds also reveal the better performance of HDPC in both the acids. The adsorption of PC and HDPC on a mild steel surface from both the acids is found to obey Temkin’s adsorption isotherm.

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 May 2009

Hosni M. Ezuber

The purpose of this paper is to evaluate the effect of seawater temperature on the corrosion behaviour of 90‐10 cupronickel alloys. Also, to investigate the effect of thiosulphate…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of seawater temperature on the corrosion behaviour of 90‐10 cupronickel alloys. Also, to investigate the effect of thiosulphate additions (one of the major sulphide oxidation products in seawater) on the alloy corrosion rate in seawater.

Design/methodology/approach

Potentiodynamic polarization measurement (DC) was used to estimate the corrosion rate of the cupronickel alloy in seawater with and without thiosulphate species (50‐650 ppm).

Findings

It was observed that the cupronickel alloy suffered accelerated corrosion as the seawater temperature was raised from 25 to 50 or 80°C. The increase in the corrosion rate was found to correspond well with the negative shift in the free corrosion potential. Thiosulphate addition was found to depend on the test temperature. At 25°C, thiosulphate activated the alloy dissolution rate and the higher were the thiosulphate concentrations, the higher was the corrosion rate. At 50 or 80°C, however, thiosulphate promoted the dissolution rate at early stages, but seemed to interfere with the surface film formation later on, producing a black film that effectively decreased the alloy corrosion rate. At higher potentials, however, the film became non‐protective, leading to accelerated corrosion once again.

Originality/value

This paper explains the corrosion behaviour of 90‐10 cupronickel alloys in seawater as a function of test temperature and thiosulphate additions.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 1998

D. Mukherjee

This paper discusses the lower concentration reinforcement of cathodic ultrafine ceramic particulates, on metal matrices like Zn, Al and alloy‐matrices like Cu Zn, Cu Mn, Al Zn…

Abstract

This paper discusses the lower concentration reinforcement of cathodic ultrafine ceramic particulates, on metal matrices like Zn, Al and alloy‐matrices like Cu Zn, Cu Mn, Al Zn and Ni‐P‐B alloy‐electrodeposits, etc. It is assumed that these ultrafine ceramic particulates in lower concentration‐range are effective in covering the anodic grain‐boundary networks and other anodic‐defect sites, such that there is an effective reduction of surface anodic‐current. It is shown that at a critical threshold particulate concentration, the surface dissolution is minimum, followed by a drastic increase above that concentration. Such increase in dissolution is attributed to the random dispersion of the particulates on the grain‐proper, as these cannot be accommodated within the anodic grain‐boundary channels, micro‐voids and other defect sites. As such they form stress‐raiser points and enhance surface dissolution. This paper also discusses the correlation of the grain boundary structures, particulate trapping capacity of the matrix and the galvanic stress factors due to random distribution of particulates.

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 September 2019

Qingmiao Ding, Zili Li, Tao Shen and Gan Cui

This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method.

Abstract

Purpose

This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method.

Design/methodology/approach

The corrosion behavior of the metal under disbond coating interfered with alternate stray current (AC) was studied by electrochemical methods using the rectangular coating disbonded simulator. The obtained data from electrode potential test, electrochemical impedance spectroscopy (EIS) and polarization curves in simulated soil solution indicated that under the natural corrosion condition, the self-corrosion potential and the corrosion current density of the metal at different depths under disbond coating had obviously changed if there was AC interference.

Findings

The self-corrosion potential of the metal at the same depths under disbond coating shifted negatively with the rising of the AC voltage. Under the condition of cathode polarization, there was still obvious potential gradient with the extension of the deep peeling of the coating gap, and the corrosion current density of the test points was minimum, and the protection effect was best when the cathode protection potential was −1.0 V. When the metal was applied with over-protection, the corrosion rate of the metal increased as AC stray current flowing through it increased.

Originality/value

This paper used the rectangular aperture device to study the corrosion behavior of X80 steel under the disbonded coatings through electrochemical methods when the AC stray current interference voltage was 0V, 1V, 5V or 10V and the protection potential was 0V, −0.9V, −1.0V, −1.2V or −1.3V, respectively. There is great significance to the safe operation and long-term service of pipeline steel in soil environment.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 October 2019

Khashayar Tabi, Mansour Farzam and Davood Zaarei

Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. The purpose of this paper is to study the…

Abstract

Purpose

Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. The purpose of this paper is to study the corrosion behavior of dacromet-coated steel.

Design/methodology/approach

Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and salt spray were carried out. SEM was used to study the morphological appearance of the surface.

Findings

The EIS behavior indicated that solvent-cleaned dacromet-coated steel sealed with potassium silicate showed that the corrosion current density was 2.664E − 5 A.cm2 which was reduced to 8.752E − 6 A.cm2 and the corrosion rate, which was 2.264E − 2 mm.year−1, was reduced to 7.438E − 3 mm.year−1 in NaCl 3.5 wt.per cent. EIS was used in NaCl 3.5 wt.%, and the Bode plot characteristics showed that the corrosion protection of solvent-cleaned, dacromet-coated steel was enhanced when sealed with potassium silicate. The EDS results of salt-sprayed, solvent-cleaned samples after 10 days indicated that the main corrosion products are composed of SiO2, ZnO and Al2O3.

Research limitations/implications

The detection of Li element in EDS was not possible because of the device limitation.

Originality/value

The current paper provides new information about the sealing properties of potassium silicate and its effects on the corrosion resistance of dacromet coating, which is widely used in many industries such as the automobile industry.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 December 2021

Rou Li, Changqing Miao and Tinghua Wei

This paper aims to investigate the electrochemical corrosion rate of galvanized steel wires for bridge cables.

Abstract

Purpose

This paper aims to investigate the electrochemical corrosion rate of galvanized steel wires for bridge cables.

Design/methodology/approach

The electrochemical corrosion test and response surface analysis of galvanized steel wires were carried out, and the variety of polarization curves of galvanized steel wires under different corrosion parameters was discussed. The expression of corrosion rate of galvanized steel wires under the action of single and multi-factor coupling was established.

Findings

The polarization curves of galvanized steel wires under different Cl- concentrations, pH value and temperature were basically similar, but all show different degrees of deviation and some anodic polarization curves had inflection points. For example, when the Cl- concentration reached 3.5%, the corrosion rate of galvanized steel wire was four times that of pure water.

Originality/value

The influence relationship of single and multi-factor coupling on the corrosion rate of galvanized steel wires was as follows: RCl > RT * Cl > RT > RpH > RpH * T > RpH * Cl.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

1 – 10 of 374