Search results

1 – 10 of 38
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 February 2024

Pavankumar Sonawane, Chandrakishor Laxman Ladekar, Ganesh Annappa Badiger and Rahul Arun Deore

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing…

Abstract

Purpose

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing and analyzing serviceable cantilever fit snap connections used in automobile plastic components. Snap fits are classified into permanent and semi-permanent fittings, with permanent fittings having a snap clipping angle between 0° and 5° and semi-permanent fittings having a clipping angle between 15° and 45°. Polypropylene random copolymer is chosen for its exceptional fatigue resistance and elasticity.

Design/methodology/approach

The design process includes determining dimensions, computing assembly, disassembly pressures and creating three-dimensional computer-aided design models. Finite element analysis (FEA) is used to evaluate the snap-fit mechanism’s stress, deformation and general functionality in operational scenarios.

Findings

The study develops a modified snap-fit mechanism with decreased bending stress and enhanced mating force optimization. The maximum bending stress during assembly is 16.80 MPa, requiring a mating force of 7.58 N, while during disassembly, it is 37.3 MPa, requiring a mating force of 16.85 N. The optimized parameters significantly improve the performance and dependability of the snap-fit mechanism. The results emphasize the need of taking into account both the assembly and disassembly processes in snap-fit design, because the research demonstrates greater forces during disassembly. The approach developed integrates FEA and design for assembly (DFA) concepts to provide a solution for improving the efficiency and reliability of snap-fit connectors in automotive applications.

Originality/value

The research paper’s distinctiveness comes from the fact that it presents a thorough and realistic viewpoint on snap-fit design, emphasizes material selection, incorporates DFA principles and emphasizes the specific requirements of both assembly and disassembly operations. These discoveries may enhance the efficiency, reliability and sustainability of snap-fit connections in plastic automobile parts and beyond. In conclusion, the idea that disassembly needs to be done with a lot more force than installation in a snap-fit design can have a good effect on buzz, squeak and rattle and noise, vibration and harshness characteristics in automobiles.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 February 2024

Enrique Bigne, Aline Simonetti, Jaime Guixeres and Mariano Alcaniz

This research analyses the searching, interacting and purchasing behavior of shoppers seeking semidurable and fast-moving consumer goods in an immersive virtual reality (VR…

Abstract

Purpose

This research analyses the searching, interacting and purchasing behavior of shoppers seeking semidurable and fast-moving consumer goods in an immersive virtual reality (VR) store, showing how physical examinations and visual inspections relate to purchases.

Design/methodology/approach

Around 60 participants completed two forced-purchase tasks using a head-mounted display with visual and motor-tracking systems. A second study using a pictorial display of the products complemented the VR study.

Findings

The findings indicate differences in shopping behavior for the two product categories, with semidurable goods requiring greater inspection and deliberation than fast-moving consumer goods. In addition, visual inspection of the shelf and products was greater than a physical examination through virtual handling for both product categories. The paper also presents relationships between visual inspections and product interactions during the searching stage of purchase decisions.

Originality/value

The research consists of two types of implicit measures in this study: eye-tracking and hand-product interactions. This study reveals the suitability of implicit measures for evaluating consumer behavior in VR stores.

Details

International Journal of Retail & Distribution Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2023

Mats Niklasson

The purpose of this paper is to elevate the importance of complementary views concerning the first years of life as important precursors for personal growth and sustainable mental…

Abstract

Purpose

The purpose of this paper is to elevate the importance of complementary views concerning the first years of life as important precursors for personal growth and sustainable mental health.

Design/methodology/approach

Paper II is a follow up to Paper I. After a short overview, connecting to the previous paper, the focus is on infancy followed by a few overlooked aspects and then a short summary on childhood and adolescence. Finally, some concluding remarks have been provided to put the paper together.

Findings

The main findings are connected to publications by other authors with insights which could be viewed as either “politically incorrect” or as simply overlooked in present research studies and discussions.

Research limitations/implications

The author presents his personal perspective on the aforementioned topics. There are contrasting ways to view them.

Practical implications

A recognition of the importance for a child to experience a “good as possible” infancy and childhood, which could mean to grow up with less use of computers and less influences from social media.

Social implications

A recognition of the importance parents and other adults have for the socialization of infants, children and adolescents.

Originality/value

This conceptual paper has compiled complementary views of infancy and childhood which are seldom heard about but are of importance for sustainable mental health.

Details

Mental Health and Social Inclusion, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-8308

Keywords

Article
Publication date: 2 September 2022

Senthil Kumar B., Anita Rachel D. and Sentil Kumar C.B.

Eri silk fiber has superior thermal insulation behavior, better softness than cotton fiber. However, Eri silk’s use in the commercial arena has not yet taken off. The purpose of…

Abstract

Purpose

Eri silk fiber has superior thermal insulation behavior, better softness than cotton fiber. However, Eri silk’s use in the commercial arena has not yet taken off. The purpose of the study is to explore the comfort properties of the fabric, which enhances the commercial acceptance of Eri silk clothing.

Design/methodology/approach

In this investigation, three different single knit Eri silk structures were produced with different loop lengths and yarn counts to analyze the influence of process variables on low-stress mechanical properties. To execute the research work, Eri silk spun yarn of three different linear densities (15 tex, 20 tex, 25 tex) were chosen. Three different knitted structures were produced, such as single jersey, popcorn and cellular blister, and two different loop lengths were also selected.

Findings

The cellular blister structure has shown appreciable low-stress properties next highest position was attained by the popcorn structure. Yarn fineness and loop length were significant with most of the low-stress properties.

Research limitations/implications

The findings of this research will contribute to a greater awareness of Eri silk knitted fabric and its process parameters in relation to its commercial utility.

Originality/value

This study was conducted to explore the influence of knit structure, loop length and yarn count on the low-stress properties of Eri silk-based thermal clothing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 April 2024

Jiwon Chung, Hyunbin Won, Hannah Lee, Soah Park, Hyewon Ahn, Suhyun Pyeon, Jeong Eun Yoon and Sumin Koo

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user…

Abstract

Purpose

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user satisfaction.

Design/methodology/approach

This study selected fabrics and materials for the suit platform through material performance tests. Two anchoring structure designs, 11-type and X-type are compared with regular clothing under control conditions. To evaluate the comfort level of the wearable suit platform, a satisfaction survey and electroencephalogram (EEG) measurements are conducted to triangulate the findings.

Findings

The 11-type exhibited higher values in comfort indicators such as α, θ, α/High-β and lower values in concentration or stress indicators such as β, ϒ, sensorimotor rhythm (SMR)+Mid-β/θ, and a spectral edge frequency of 95% compared to the X-type while walking. The 11-type offers greater comfort and satisfaction compared to the X-type when lifting based on the EEG measurements and the participants survey.

Originality/value

It is recommended to implement the 11-type when designing wearable suit platforms. These findings offer essential data on wearability, which can guide the development of soft wearable robots.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 February 2023

Mansi Gupta

Art-infusion has become a common practice among brands across the globe. This is because marketers leverage the uniqueness and prestige of arts to earn superior profits. Hence…

Abstract

Purpose

Art-infusion has become a common practice among brands across the globe. This is because marketers leverage the uniqueness and prestige of arts to earn superior profits. Hence, this research aims to understand and measure consumers' willingness to pay (WTP) for art-infused products.

Design/methodology/approach

A questionnaire was designed based on conjoint analysis and was responded to by 470 respondents from India. The estimation of preference functions in conjoint analysis was intended to use orthogonal arrays to measure WTP.

Findings

The study reveals consumers' utility and WTP for different art-infused products. The results indicated that consumers have the highest WTP for products that have artwork dominated by the visual elements of colour, shapes and space.

Practical implications

The paper presents valuable findings for marketers to develop their product design and earn superior profits.

Originality/value

This is the first study in the domain of the art infusion phenomenon that measures WTP for non-luxury art-infused products. Also, this is the first study to measure WTP for different kinds of art forms.

Details

South Asian Journal of Business Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-628X

Keywords

Article
Publication date: 28 March 2023

Gopalakrishnan Palaniappan, Anita Rachel D., Sentilkumar C.B., Selvaraj Senthil Kumar, Senthil Kumar B. and Devaki E.

Eri is a short-stapled fibre that possesses an excellent soft feel and warmness to the wearer. Investigation of thermal comfort and moisture properties of Eri silk fabric provides…

Abstract

Purpose

Eri is a short-stapled fibre that possesses an excellent soft feel and warmness to the wearer. Investigation of thermal comfort and moisture properties of Eri silk fabric provides the enhanced commercial scope for Eri silk-based clothing.

Design/methodology/approach

To examine the impact of process factors on thermal and moisture properties, three different single knit Eri silk structures were made, each with a different loop length and yarn count. Three different linear densities of Eri silk spun yarn (15, 20 and 25 tex) were selected. Three distinct knitted constructions, including plain jersey, popcorn and cellular blister, were created, along with two different loop lengths.

Findings

The novel cellular blister structure has shown appreciable thermal comfort properties than the other two structures. Yarn fineness and loop length were significant with most of the thermal comfort properties.

Research limitations/implications

In recent times the Eri silk production is completely domesticated, so the new demand can easily be met by the producers. This research will create a new scope for Eri silk fibres in sportswear and leisure wear.

Originality/value

This study was conducted to explore the influence of knit structure, loop length and yarn count on the thermal comfort properties of the clothing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 38