Search results

1 – 10 of 26
Article
Publication date: 3 July 2017

Alex A. Schmidt, Alice de Jesus Kozakevicius and Stefan Jakobsson

The current work aims to present a parallel code using the open multi-processing (OpenMP) programming model for an adaptive multi-resolution high-order finite difference scheme

Abstract

Purpose

The current work aims to present a parallel code using the open multi-processing (OpenMP) programming model for an adaptive multi-resolution high-order finite difference scheme for solving 2D conservation laws, comparing efficiencies obtained with a previous message passing interface formulation for the same serial scheme and considering the same type of 2D formulations laws.

Design/methodology/approach

The serial version of the code is naturally suitable for parallelization because the spatial operator formulation is based on a splitting scheme per direction for which the flux components are numerically computed by a Lax–Friedrichs factorization independently for each row or column. High-order approximations for numerical fluxes are computed by the third-order essentially non-oscillatory (ENO) and fifth-order weighted essentially non-oscillatory (WENO) interpolation schemes, assuming sparse grids in each direction. The grid adaptivity is obtained by a cubic interpolating wavelet transform applied in each space dimension, associated to a threshold operator. Time is evolved by a third order TVD RungeKutta method.

Findings

The parallel formulation is implemented automatically at compiling time by the OpenMP library routines, being virtually transparent to the programmer. This over simplifies any concerns about managing and/or updating the adaptive grid when compared to what is necessary to be done when other parallel approaches are considered. Numerical simulations results and the large speedups obtained for the Euler equations in gas dynamics highlight the efficiency of the OpenMP approach.

Research limitations/implications

The resulting speedups reflect the effectiveness of the OpenMP approach but are, to a large extension, limited by the hardware used (2 E5-2620 Intel Xeon processors, 6 cores, 2 threads/core, hyper-threading enabled). As the demand for OpenMP threads increases, the code starts to make explicit use of the second logical thread available in each E5-2620 processor core and efficiency drops. The speedup peak is reached near the possible maximum (24) at about 22, 23 threads. This peak reflects the hardware configuration and the true software limit should be located way beyond this value.

Practical implications

So far no attempts have been made to parallelize other possible code segments (for instance, the ENO|-WENO-TVD code lines that process the different data components which could potentially push the speed up limit to higher values even further. The fact that the speedup peak is located close to the present hardware limit reflects the scalability properties of the OpenMP programming and of the splitting scheme as well. Consequently, it is likely that the speedup peak with the OpenMP approach for this kind of problem formulation will be close to the physical (and/or logical) limit of the hardware used.

Social implications

This work is the result of a successful collaboration among researchers from two different institutions, one internationally well-known and with a long-term experience in applied mathematics for industrial applications and the other in a starting process of international academic insertion. In this way, this scientific partnership has the potential of promoting further knowledge exchange, involving students and other collaborators.

Originality/value

The proposed methodology (use of OpenMP programming model for the wavelet adaptive splitting scheme) is original and contributes to a very active research area in the past years, namely, adaptive methods for conservation laws and their parallel formulations, which is of great interest for the entire scientific community.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2020

Zhijian Duan and Gongnan Xie

The discontinuous Galerkin finite element method (DGFEM) is very suited for realizing high order resolution approximations on unstructured grids for calculating the hyperbolic…

Abstract

Purpose

The discontinuous Galerkin finite element method (DGFEM) is very suited for realizing high order resolution approximations on unstructured grids for calculating the hyperbolic conservation law. However, it requires a significant amount of computing resources. Therefore, this paper aims to investigate how to solve the Euler equations in parallel systems and improve the parallel performance.

Design/methodology/approach

Discontinuous Galerkin discretization is used for the compressible inviscid Euler equations. The multi-level domain decomposition strategy was used to deal with the computational grids and ensure the calculation load balancing. The total variation diminishing (TVD) RungeKutta (RK) scheme coupled with the multigrid strategy was employed to further improve parallel efficiency. Moreover, the Newton Block Gauss–Seidel (GS) method was adopted to accelerate convergence and improve the iteration efficiency.

Findings

Numerical experiments were implemented for the compressible inviscid flow problems around NACA0012 airfoil, over M6 wing and DLR-F6 configuration. The parallel acceleration is near to a linear convergence. The results indicate that the present parallel algorithm can reduce computational time significantly and allocate memory reasonably, which has high parallel efficiency and speedup, and it is well-suited to large-scale scientific computational problems on multiple instruction stream multiple data stream model.

Originality/value

The parallel DGFEM coupled with TVD RK and the Newton Block GS methods was presented for hyperbolic conservation law on unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 October 2018

Alice de Jesus Kozakevicius, Dia Zeidan, Alex A. Schmidt and Stefan Jakobsson

The purpose of this work is to present the implementation of weighted essentially non-oscillatory (WENO) wavelet methods for solving multiphase flow problems. The particular…

Abstract

Purpose

The purpose of this work is to present the implementation of weighted essentially non-oscillatory (WENO) wavelet methods for solving multiphase flow problems. The particular interest is gas–liquid two-phase mixture with velocity non-equilibrium. Numerical simulations are carried out on different scenarios of one-dimensional Riemann problems for gas–liquid flows. Results are validated and qualitatively compared with solutions provided by other standard numerical methods.

Design/methodology/approach

This paper extends the framework of WENO wavelet adaptive method to a fully hyperbolic two-phase flow model in a conservative form. The grid adaptivity in each time step is provided by the application of a thresholded interpolating wavelet transform. This facilitates the construction of a small yet effective sparse point representation of the solution. The method of Lax–Friedrich flux splitting is used to resolve the spatial operator in which the flux derivatives are approximated by the WENO scheme.

Findings

Hyperbolic models of two-phase flow in conservative form are efficiently solved, as shocks and rarefaction waves are precisely captured by the chosen methodology. Substantial computational gains are obtained through the grid reduction feature while maintaining the quality of the solutions. The results indicate that WENO wavelet methods are robust and sufficient to accurately simulate gas–liquid mixtures.

Originality/value

Resolution of two-phase flows is rarely studied using WENO wavelet methods. It is the first time such a study on the relative velocity is reported in two-phase flows using such methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 December 2023

Fatima Harbate, Nouh Izem, Mohammed Seaid and Dia Zeidan

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Abstract

Purpose

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Design/methodology/approach

The governed equations consist of a range of conservation laws modeling a classification of two-phase flow phenomena subjected to a velocity nonequilibrium for the gas–liquid mixture. Effects of the relative velocity are accounted for in the present model by a kinetic constitutive relation coupled to a collection of specific equations governing mass and volume fractions for the gas phase. Unlike many two-phase models, the considered system is fully hyperbolic and fully conservative. The suggested relaxation approach switches a nonlinear hyperbolic system into a semilinear model that includes a source relaxation term and characteristic linear properties. Notably, this model can be solved numerically without the use of Riemann solvers or linear iterations. For accurate time integration, a high-resolution spatial reconstruction and a RungeKutta scheme with decreasing total variation are used to discretize the relaxation system.

Findings

The method is used in addressing various nonequilibrium two-phase flow problems, accompanied by a comparative study of different reconstructions. The numerical results demonstrate the suggested relaxation method’s high-resolution capabilities, affirming its proficiency in delivering accurate simulations for flow regimes characterized by strong shocks.

Originality/value

While relaxation methods exhibit notable performance and competitive features, as far as we are aware, there has been no endeavor to address nonequilibrium two-phase flow problems using these methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 December 2019

LanHao Zhao, Kailong Mu, Jia Mao, Khuc Hongvan and Dawei Peng

Moving interface problems exist commonly in nature and industry, and the main difficulty is to represent the interface. The purpose of this paper is to capture the accurate…

Abstract

Purpose

Moving interface problems exist commonly in nature and industry, and the main difficulty is to represent the interface. The purpose of this paper is to capture the accurate interface, a novel three-dimensional one-layer particle level set (OPLS) method is presented by introducing Lagrangian particles to reconstruct the seriously distorted level set function.

Design/methodology/approach

First, the interface is captured by the level set method. Then, the interface is corrected with only one-layer particles advected with the flow to ensure that the level set function value of the particle is equal to 0. When interfaces are merged, all particles in merged regions are deleted, while the added particles near the generated interface are used to determine the interface as the interface is separated.

Findings

The OPLS method is validated with well-known benchmark examples, such as the long-term advection of a sphere, the rotation of a three-dimensional slotted disk and sphere, single vortex in a box, sphere merging and separation, deformation of a sphere. The simulation results indicate that the proposed method is found to be highly reliable and accurate.

Originality/value

This method exhibits excellent conservation of the area bounded by the interface. The extraordinary performance is also shown in dealing with complex interface topological changes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

Mehdi Jamei and H Ghafouri

The purpose of this paper is to present an efficient improved version of Implicit Pressure-Explicit Saturation (IMPES) method for the solution of incompressible two-phase flow…

Abstract

Purpose

The purpose of this paper is to present an efficient improved version of Implicit Pressure-Explicit Saturation (IMPES) method for the solution of incompressible two-phase flow model based on the discontinuous Galerkin (DG) numerical scheme.

Design/methodology/approach

The governing equations, based on the wetting-phase pressure-saturation formulation, are discretized using various primal DG schemes. The authors use H(div) velocity reconstruction in Raviart-Thomas space (RT_0 and RT_1), the weighted average formulation, and the scaled penalties to improve the spatial discretization. It uses a new improved IMPES approach, by using the second-order explicit Total Variation Diminishing Runge-Kutta (TVD-RK) as temporal discretization of the saturation equation. The main purpose of this time stepping technique is to speed up computation without losing accuracy, thus to increase the efficiency of the method.

Findings

Utilizing pressure internal interpolation technique in the improved IMPES scheme can reduce CPU time. Combining the TVD property with a strong multi-dimensional slope limiter namely, modified Chavent-Jaffre leads to a non-oscillatory scheme even in coarse grids and highly heterogeneous porous media.

Research limitations/implications

The presented locally conservative scheme can be applied only in 2D incompressible two-phase flow modeling in non-deformable porous media. In addition, the capillary pressure discontinuity between two adjacent rock types assumed to be negligible.

Practical implications

The proposed numerical scheme can be efficiently used to model the incompressible two-phase flow in secondary recovery of petroleum reservoirs and tracing immiscible contamination in aquifers.

Originality/value

The paper describes a novel version of the DG two-phase flow which illustrates the effects of improvements in special discretization. Also the new improved IMPES approach used reduces the computation time. The non-oscillatory scheme is an efficient algorithm as it maintains accuracy and saves computation time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1993

C.P.T. GROTH and J.J. GOTTLIEB

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium…

83

Abstract

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 1995

E. Dick and J. Steelant

A comparison of the accuracy of the central discretization scheme withartificial dissipation and the upwind flux‐difference TVD scheme has beenmade for the compressible…

Abstract

A comparison of the accuracy of the central discretization scheme with artificial dissipation and the upwind flux‐difference TVD scheme has been made for the compressible Navier‐Stokes equations for high Reynolds number flows. First, a comparison is made on two one‐dimensional model problems. Then the schemes are compared on flat plate boundary layer flow. It is shown that a central scheme basically has poor accuracy due to the isotropic nature of the artificial dissipation. An upwind scheme decomposes the flow into different components and adapts the dissipation to the velocity of the components. The associated ansitropic dissipation results in a good accuracy. It is further discussed how a central discretization scheme with artificial dissipation can be improved at the expense of the same complexity of an upwind scheme.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2015

Shooka Karimpour Ghannadi and Vincent H. Chu

The purpose of this paper is to evaluate the performance of a numerical method for the solution to shallow-water equations on a staggered grid, in simulations for shear…

Abstract

Purpose

The purpose of this paper is to evaluate the performance of a numerical method for the solution to shallow-water equations on a staggered grid, in simulations for shear instabilities at two convective Froude numbers.

Design/methodology/approach

The simulations start from a small perturbation to a base flow with a hyperbolic-tangent velocity profile. The subsequent development of the shear instabilities is studied from the simulations using a number of flux-limiting schemes, including the second-order MINMOD, the third-order ULTRA-QUICK and the fifth-order WENO schemes for the spatial interpolation of the nonlinear fluxes. The fourth-order Runge-Kutta method advances the simulation in time.

Findings

The simulations determine two parameters: the fractional growth rate of the linear instabilities; and the vorticity thickness of the first nonlinear peak. Grid refinement using 32, 64, 128, 256 and 512 nodes over one wave length determines the exact values by extrapolation and the computational error for the parameters. It also determines the overall order of convergence for each of the flux-limiting schemes used in the numerical simulations.

Originality/value

The four-digit accuracy of the numerical simulations presented in this paper are comparable to analytical solutions. The development of this reliable numerical simulation method has paved the way for further study of the instabilities in shear flows that radiate waves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2010

Mohamed Rady, Eric Arquis, Dominique Gobin and Benoît Goyeau

This paper aims to tackle the problem of thermo‐solutal convection and macrosegregation during ingot solidification of metal alloys. Complex flow structures associated with the…

Abstract

Purpose

This paper aims to tackle the problem of thermo‐solutal convection and macrosegregation during ingot solidification of metal alloys. Complex flow structures associated with the development of channels segregate and sharp gradients in the solutal field call for the implementation of accurate methods for numerical modeling of alloy solidification. In particular, the solute transport equation is convection dominated and requires special non‐oscillarity type high‐order schemes to handle the regions of channels segregates.

Design/methodology/approach

In the present study, a time‐splitting approach has been adopted to separately handle solute advection and diffusion. This splitting technique allows the application of accurate total variation dimensioning (TVD) schemes for solution of solute advection. Applications of second‐order Lax‐Wendroff TVD SUPERBEE and fifth‐order weighted essentially non‐oscillatory (WENO) schemes are described in the present article. Classical numerical solution of solute transport using hybrid and central‐difference schemes are also employed for the purpose of comparisons. Numerical simulations for solidification of Pb‐18%Sn in a two‐dimensional rectangular cavity have been carried out using different numerical schemes.

Findings

Numerical results show the difficulty of obtaining grid‐independent solutions with respect to local details in the region of channels. Grid convergence patterns and numerical uncertainty are found to be dependent on the applied scheme. In general, the first‐order hybrid scheme is diffusive and under predicts the formation of channels. The second‐order central‐difference scheme brings about oscillations with possible non‐physical extremes of solute composition in the region of channel segregates due to sharp gradients in the solutal field. The results obtained using TVD and WENO schemes contain no oscillations and show an excellent capture of channels formation and resolution of the interface between solute‐rich and depleted bands. Different stages of channels formation are followed by analyzing thermo‐solutal convection and macrosegregation at different times during solidification.

Research limitations/implications

Accurate prediction of local variation in the solutal and flow fields in the channels regions requires grid refinement up to scales in the order of microscopic dendrite arm spacing. This imposes limitations in terms of large computational time and applicability of available macroscopic models based on classical volume‐averaging techniques.

Practical implications

The present study is very useful for numerical simulation of macrosegregation during ingot casting of metal alloys.

Originality/value

The paper provides the methodology and application of TVD schemes to predict channel segregates during columnar solidification of metal alloys. It also demonstrates the limitations of classical schemes for simulation of alloy solidification.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 26