Search results

1 – 10 of 18
Article
Publication date: 7 August 2017

Hwanwoo Lee, Joon Hyung Park, Shing-Chung Ngan and T. Siva Tian

The purpose of this paper is to contribute to the human resources (HR) literature by using exploratory network analysis (ENA), a data-driven technique. This technique was employed…

Abstract

Purpose

The purpose of this paper is to contribute to the human resources (HR) literature by using exploratory network analysis (ENA), a data-driven technique. This technique was employed to discover how the perceived effectiveness of HR practices interrelate with employee perceptions on organizational cultural factors to enhance organizational commitment.

Design/methodology/approach

The authors used data from 1,459 employees of a large South Korean conglomerate and studied how individual HR practices could be enhanced by specific organizational cultural factors. The data were analyzed using ENA, which is an inductive approach.

Findings

The authors found that organizational commitment is associated with the positive perceptions of employees on the effectiveness of HR practices, such as performance appraisal, training and development, and compensation. Results show that when both HR practices and organizational cultural factors are considered, they appear to influence organizational commitment independently.

Research limitations/implications

Data were collected from a large conglomerate. The authors were limited by the use of the scales developed by a consulting firm. Therefore, readers should be cautious about the generalizability of the findings.

Originality/value

The application of a data-driven technique (ENA) highlights the potentially fertile methodological grounds for HR research. Literature on strategic HR management may benefit from inductive approaches, wherein data serve as primary foundation for the design and development of new theories.

Details

Evidence-based HRM: a Global Forum for Empirical Scholarship, vol. 5 no. 2
Type: Research Article
ISSN: 2049-3983

Keywords

Article
Publication date: 5 July 2021

Siva Marimuthu and Dhavamani Chinnathambi

Since the inception of aerospace engineering, reducing drag is of eternal importance. Over the years, researchers have been trying to improve the aerodynamics of National Advisory…

181

Abstract

Purpose

Since the inception of aerospace engineering, reducing drag is of eternal importance. Over the years, researchers have been trying to improve the aerodynamics of National Advisory Committee for Aeronautics (NACA) aerofoils in many ways. It is proved that smooth-surfaced NACA 0012 aerofoil produces more drag in compressible flow. Recent research on shark-skin pattern warrants a feasible solution to many fluid-engineering problems. Several attempts were made by many researchers to implement the idea of shark skin in the form of coatings, texture and more. However, those ideas are at greater risk when it comes to wing maintenance. The purpose of this paper is to implement a relatively larger biomimetic pattern which would make way for easy maintenance of patterned wings with improved performance.

Design/methodology/approach

In this paper, two biomimetic aerofoils are designed by optimizing the surface pattern of shark skin and are tested at different angles of attack in the computational flow domain.

Findings

The results of the biomimetic aerofoils prove that viscous and total drag can be reduced up to 33.08% and 3.68%, respectively, at high subsonic speed when validated against a NACA 0012 aerofoil. With the ample effectiveness of patched shark-skin pattern, biomimetic aerofoil generates as high as 10.42% lift than NACA 0012.

Originality/value

In this study, a feasible shark-skin pattern is constructed for NACA 0012 in a transonic flow regime. Computational results achieved using the theoretical model agree with experimental data.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 2015

Kerim Yapici and Salih Obut

The purpose of this paper is to numerically investigate steady, laminar natural and mixed convection heat transfer in a two-dimensional cavity by using a finite volume method with…

Abstract

Purpose

The purpose of this paper is to numerically investigate steady, laminar natural and mixed convection heat transfer in a two-dimensional cavity by using a finite volume method with a fourth-order approximation of convective terms, with and without the presence of nanoparticles. Highly accurate benchmark results are also provided.

Design/methodology/approach

A finite volume method on a non-uniform staggered grid is used for the solution of two-dimensional momentum and energy conservation equations. Diffusion terms, in the momentum and energy equations, are approximated using second-order central differences, whereas a non-uniform four-point fourth-order interpolation (FPFOI) scheme is developed for the convective terms. Coupled mass and momentum conservation equations are solved iteratively using a semi-implicit method for pressure-linked equation method.

Findings

For the case of natural convection problem at high-Rayleigh numbers, grid density must be sufficiently high in order to obtain grid-independent results and capture reality of the physics. Heat transfer enhancement for natural convection is observed up to a certain value of the nanoparticle volume fraction. After that value, heat transfer deterioration is found with increasing nanoparticle volume fraction.

Originality/value

Developed a non-uniform FPFOI scheme. Highly accurate benchmark results for the heat transfer of Al2O3-water nanofluid in a cavity are provided.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 April 2022

Vimal K.E.K., Sonu Raja, Venkata Siva Prasanth Yendeti, Amarendra Kancharla and Jayakrishna Kandasamy

The purpose of this paper is to investigate the effect of current carbon tax (CT) policy on organizations involved in a sharing network relation.

Abstract

Purpose

The purpose of this paper is to investigate the effect of current carbon tax (CT) policy on organizations involved in a sharing network relation.

Design/methodology/approach

For finding the CT and economic value of the industries connected in a sharing network model a multi-objective multi-integer linear model has been formulated. The data set of the case organization is used for computation. The formulated mathematical model is computed with the aid of GAMS optimization program.

Findings

This research paper demonstrates the effectiveness of the sharing network strategy in increasing the economic value and decreasing the CT for industries involved in sharing network. The CT value INR 3,012.694 for the industries in Scenario II which incorporates the sharing network is less than the CT INR 3,580.167 for industries in Scenario I without sharing network.

Research limitations/implications

The data used for the computation is based on a particular sharing network under investigation. The formulated mathematical model can be checked with similar sharing networks by varying the parameters.

Practical implications

This work can aid in gaining complete knowledge on the sharing network strategy which can uplift the resources and the monetary value of the non-efficient industries moving them towards sustainable and greener supply chain practices.

Social implications

The presented work can impact various industries in developing countries providing them with a strategy to enhance their resources and economic value by maintaining an amicable relation.

Originality/value

This work uniquely was able to validate economic feasibility and CT in accordance with the carbon footprint involved in sharing network. This sharing network also incorporates the concepts of circular economy and reverse logistics for showcasing a better strategy.

Details

Journal of Modelling in Management, vol. 18 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 7 October 2021

Amrita Maddamasetty, Kamesh Bodduru, Siva Bevara, Rukmini Srikant Revuru and Sanjay Kumar

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply…

Abstract

Purpose

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply of a small quantity of specialized coolant to the machining zone or use of a solid lubricant is a possible solution. The purpose of the present work is to improve machinability of Inconel718 using graphene nanoplatelets.

Design/methodology/approach

In the present study, graphene is used in the machining of Inconel 718 alloy. Graphene is applied in the following two forms: as a solid lubricant and as an inclusion in cutting fluid. Graphene-based self-lubricating tool and graphene added nanofluids are prepared and applied to turning of Inconel 718 at varying cutting velocities. Performances are compared by measuring cutting forces, cutting temperature, tool wear and surface roughness.

Findings

Graphene, in both forms, showed superior performance compared to dry machining. In total, 0.3 Wt.% graphene added nanofluids showed the lowest cutting tool temperature and flank wear with 44.95% and 83.37% decrease, respectively, compared to dry machining and lowest surface roughness, 0.424 times compared to dry machining at 87 m/min.

Originality/value

Graphene could improve the machinability of Inconel 718 when used in tools as a solid lubricant and also when used as a dispersant in cutting fluid. Graphene used as a dispersant in cutting fluid is found to be more effective.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 November 2011

R.S. Sudheesh and N. Siva Prasad

The purpose of this paper is to study the effect of trailing liquid nitrogen (LN2) heat sink on arc welding of mild steel plates. The effect on temperature field, stress and…

Abstract

Purpose

The purpose of this paper is to study the effect of trailing liquid nitrogen (LN2) heat sink on arc welding of mild steel plates. The effect on temperature field, stress and distortions are studied using experimental and numerical methods.

Design/methodology/approach

The methodology consists of experimental and numerical methods. The temperature measured at a point near the arc is used to estimate the cooling capacity of the heat sink using inverse heat transfer (IHT) method. The estimated cooling flux is applied to the finite element model to study the stress and distortions using LN2 heat sink. The stresses are measured using X‐ray diffraction technique and the distortions using dial gauges.

Findings

IHT method has been employed in estimating the cooling capacity of the LN2 jet. This has been applied to welding to study the effect on weld induced stresses and distortions. The method can be extended to calculate the heat removal rate in various manufacturing processes where cooling is employed.

Research limitations/implications

The lack of temperature dependent material properties resulted in deviation of stresses between analytical results and experiment values.

Originality/value

IHT method developed for heat removal capacity of trailing heat sink is a contribution. The estimated heat flux shows good agreement in analytical and experimental temperature values. These temperatures have been extended to calculate stresses and out of plane distortions in welding and there is a reasonable agreement between finite element analysis and experimental results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 August 2022

Avinash Mishra, Amrit Raj Paul, Manidipto Mukherjee, Rabesh Kumar Singh and Anuj Kumar Sharma

The purpose of this research is to show the characteristics of a Cu–Ti dissimilar interface produced by a wire arc-based additive manufacturing process. The purpose of this…

Abstract

Purpose

The purpose of this research is to show the characteristics of a Cu–Ti dissimilar interface produced by a wire arc-based additive manufacturing process. The purpose of this research was to determine the viability of the Cu–Ti interface for the fabrication of functionally graded structures (FGS) using the wire arc additive manufacturing (WAAM) process.

Design/methodology/approach

This paper used the WAAM process with variable current vis-à-vis heat input to demonstrate multiple Ti-6Al-4V (Ti64) and C11000 dissimilar fabrications. The hardness and microstructure of the dissimilar interfaces were investigated thoroughly. The formation of Cu–Ti intermetallic at the Ti64/Cu fusion interface is been revealed by scanning electron microscopy and energy dispersive X-ray analysis, while X-ray diffraction was used to identify various Cu–Ti intermetallic phases. The effect of microstructure on interfacial sensitivity and hardness are also investigated.

Findings

The formation of CuTi intermetallic and the β-phase transformation in Ti-6Al-4V are found to be heat input dependent. The Cu diffusion length increases as the heat input for Ti64 deposition increases, resulting in a greater Cu–Ti intermetallic thickness. The Cu–Ti interface properties improve when the heat input is less than approximately 250 J/mm or the deposition current is less than 90 A. The microhardness ranges from 55 to 650 HV from the Cu-side to the interface and from 650 to 350 HV from the interface to the Ti-side. Higher current increases interface hardness, which increases brittleness and makes the interface more prone to interfacial cracking.

Originality/value

Nonlinear components are needed for a variety of extreme engineering applications, which can be met by FGS with varying microstructure, composition and properties. FGS produced using the WAAM process is a novel concept that requires further investigation. Despite numerous studies on Ti-clad Cu, information on Cu–Ti interface characteristics is lacking. Furthermore, the suitability of the WAAM process for the development of Cu–Ti FGS is unknown. As a result, the goal of this research article is to fill these gaps by providing preliminary information on the feasibility of developing Cu–Ti FGS via the WAAM process.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 April 2021

Thais Coutinho Gonçalves Silva, Rosley Anholon, Izabela Simon Rampasso, Osvaldo Luiz Gonçalves Quelhas, Walter Leal Filho, Luis Antonio Santa-Eulalia and Francisco Rodrigues Lima Junior

This article aims to evaluate the integration level of a quality management system (QMS) and an environmental management system (EMS) in a tire manufacturer and propose a guide to…

Abstract

Purpose

This article aims to evaluate the integration level of a quality management system (QMS) and an environmental management system (EMS) in a tire manufacturer and propose a guide to evaluate the integration of these systems in companies.

Design/methodology/approach

The methodological strategies used in this research were literature review; and case study, with interviews to verify professionals' perception about benefits from integration. Data from interviews were analyzed through Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).

Findings

The results showed that the studied company has a simple level of integration, observing only some low intensity benefits. Thus, it was recommended that the company partially integrate its management systems (MSs) before evolving into something more complex. The literature and the findings of case study were used as basis for proposing a guide to evaluate MS integration.

Originality/value

Lessons learned throughout the study and the suggested guide can support other companies to assess the integration level of their QMS and EMS. Thus, the findings presented here can be useful for researchers and managers.

Article
Publication date: 10 April 2017

Gunnar Dahlin and Raine Isaksson

The purpose of this paper is to study how the expression “integrated management systems” is interpreted in literature, what it means to have an integrated management system (IMS…

1623

Abstract

Purpose

The purpose of this paper is to study how the expression “integrated management systems” is interpreted in literature, what it means to have an integrated management system (IMS) and what the results of this are.

Design/methodology/approach

A literature review was conducted based on Scopus using the search term “Integrated Management Systems.” In the chosen articles, effects of integration, scope, level and extent of integration and if the approach is inside-out or outside-in, have been analyzed.

Findings

Most articles on IMS conclude that integration is beneficial regarding cost saving, operational benefits and improved customer satisfaction. The general approach in the articles, describes an inside-out approach with focus on integrating existing management standards. The scope of integration covers typically management systems for quality, environment and occupational health and safety.

Practical implications

An IMS is found to be a system that integrates existing management standards based on an inside-out approach. This indicates possibilities for both practical improvement and research in exploring how integrated stakeholder needs could be managed, possibly as process-based IMSs.

Originality/value

This paper sheds light on the ambiguous interpretation of the IMS concept.

Details

The TQM Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 20 September 2018

Mehdi Hosseini Abadshapoori and Mohammad Hassan Saidi

The purpose of this paper is to investigate the natural convection behavior of nanofluids in an enclosure. The enclosure is a 3D capsule with curved boundaries filled with TiO2

Abstract

Purpose

The purpose of this paper is to investigate the natural convection behavior of nanofluids in an enclosure. The enclosure is a 3D capsule with curved boundaries filled with TiO2-water nanofluid.

Design/methodology/approach

In this paper, a multiple relaxation times lattice Boltzmann method (MRT-LBM) has been used. Two-component LBM has been conducted to consider the interaction forces between nanoparticles and the base fluid.

Findings

Results show that the enhanced Nusselt number (Nu*) increases with the increase in volume fraction of nanoparticles (ϕ) and Ra number and decrease of nanoparticle size (λ). Additionally, the findings indicate that increasing volume fraction beyond a certain value decreases Nu*.

Originality/value

This paper presents a MRT model of lattice Boltzmann in a 3D curved enclosure. A correlation is also presented based on the current results for Nu* depending on Ra number, volume fraction and size of nanoparticles. Furthermore, a comparison for the convergence rate and accuracy of this model and the SIMPLE algorithm is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 18