Search results

1 – 10 of 455
Article
Publication date: 31 May 2022

Srinivasan Vadivel, Boopathi C.S., Sridhar R. and Tarana Kaovasia

The aim of this research study is to mitigate shading impact on solar photovoltaic array. Photovoltaic (PV) array when getting shaded not only results in appreciable power loss…

Abstract

Purpose

The aim of this research study is to mitigate shading impact on solar photovoltaic array. Photovoltaic (PV) array when getting shaded not only results in appreciable power loss but also exhibits multiple power peaks. Due to these multiple power peaks, the maximum power point tracking (MPPT) controllers’ performance will be affected, as most of the times it ends up in tracking the local maximum power peak and not the global power peak.

Design/methodology/approach

The PV panels in an PV array when getting shaded even partially would result in huge power loss. The pattern of shading also plays a crucial role, as it renders a cascaded impact on the overall power output because the cells/panels are connected in series and are parallel. Therefore, during shading, intelligent schemes are needed to appropriately connect and discard the unhealthy and healthy panels in right place with right combination. This research proposes one such scheme to mitigate the shading impact.

Findings

To mitigate the shading impact and also to have a smooth power-voltage (P-V) curve, a new series inducing switching scheme is introduced. The proposed scheme not only mitigates the shading impact and enhances the output power but also smoothens the P-V curve that facilitates the MPPTs to track the P-V appropriately.

Originality/value

The research findings are inventive in nature and not copied work. The reference works and the inspirations have been duly cited and credited.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 April 2024

Hongmei Qi, Kailin Yang, Sibin Wu and Joo Jung

Research on strategic alliances is concerned with two issues: continuation and reconfiguration. Building on prior research that examines the two issues separately, the paper…

Abstract

Purpose

Research on strategic alliances is concerned with two issues: continuation and reconfiguration. Building on prior research that examines the two issues separately, the paper studies them simultaneously. This paper aims to investigate how strategic alliances may exert the synergetic effect between dynamics and stability as well as to discuss the dynamic evolution process and influence factors of strategic alliances.

Design/methodology/approach

This paper describes the construction of a two-party evolutionary game model of alliance and partners. The model is used to analyze the evolution process of synergetic mechanism to determine when to terminate and when to continue with a partnership. Further, numerical simulation is used to quantify the results and to gain insight into the effects of various factors on the dynamic evolution of the synergetic mechanism.

Findings

This paper reveals several synergetic states of dynamics and stability in the alliances. The results show that synergy states are positively affected by the collaborative innovation benefits, alliance management capability, the intensity of intellectual property protection, liquidated damages and reputation losses, and negatively affected by the absorptive capacity of partners.

Practical implications

The study helps the alliance to achieve long-term development as well as to balance the paradoxical relationship. The results suggest that managers of strategic alliances should focus on building strong and long-term relationships in order to achieve high performance innovations. Managers should also pay close attention to their partners’ behaviors in previous alliances.

Originality/value

This paper provides new insights into the paradoxical relationship in alliance by revealing the evolution of synergetic mechanism between dynamics and stability. The results remind alliances to understand the relationship between dynamics and stability and to notice the influence factors of synergistic effects when they are making decisions.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 24 May 2023

Grégory Jemine, François-Régis Puyou and Florence Bouvet

Increasingly, emerging information technologies such as shared software and continuous accounting are offering alternative ways to perform accounting tasks in a supposedly more…

Abstract

Purpose

Increasingly, emerging information technologies such as shared software and continuous accounting are offering alternative ways to perform accounting tasks in a supposedly more efficient fashion. Yet, few studies have investigated how they affect the provision of accounting services, especially in the context of small accounting firms, which provide legal and tax services to entrepreneurs and businesses. Drawing on the service perspective, the paper critically examines how technological innovation challenges and reconfigures the co-production of accounting services in these firms.

Design/methodology/approach

The paper answers calls issued in prior studies to conduct empirical research on emerging information technologies for accountants. It focuses on the specific context of small accounting firms and draws on interviews with small accounting firms' managers (n = 20).

Findings

The study emphasizes five significant challenges that accounting firm managers face when using information technologies to support the provision of their services (ensuring reliability, factoring in their heterogeneous client base, repricing, training clients to use new technologies and promoting advisory services). Information technologies are shown to have a structuring role in the co-production of accounting services, as they lead to reconfigurations of the relationships between accountants and their clients. A range of four configurations is developed to highlight accountants' strategies to maintain collaborative relationships with their clients while integrating new technologies into their work practices.

Originality/value

By conceptualizing accounting services as a co-production process, the paper offers new insights into the implications of emerging information technologies for small accounting firms.

Details

Accounting, Auditing & Accountability Journal, vol. 37 no. 1
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 2 January 2024

Tim Gruchmann, Gernot M. Stadtfeld, Matthias Thürer and Dmitry Ivanov

Experiencing more frequent, system-wide disruptions, such as pandemics and geopolitical conflicts, supply chains can be largely destabilized by a lack of materials, services or…

Abstract

Purpose

Experiencing more frequent, system-wide disruptions, such as pandemics and geopolitical conflicts, supply chains can be largely destabilized by a lack of materials, services or components. Supply chain resilience (SCRES) constitutes the network ability to recover after and survive during such unexpected events. To enhance the understanding of SCRES as a system-wide quality, this study tests a comprehensive SCRES model with data from multiple industries.

Design/methodology/approach

The study proposes a theoretical framework conceptualizing SCRES as system quality, extending the classical proactive/reactive taxonomy by multiple system states consisting of the supply system properties, behaviors and responses to disruptions. Underlying hypotheses were tested using an online survey. The sample consists of 219 responses from German industries. Maximum likelihood structural equation modeling (ML-SEM) and moderation analysis were used for analyzing the survey data. The study was particularly designed to elaborate on supply chain theory.

Findings

Two pathways of parallel SCRES building were identified: proactive preparedness via anticipation and reactive responsiveness via agility. Both system responses are primarily built simultaneously rather than successively. The present study further provides empirical evidence on the central role of visibility and velocity in achieving comprehensive SCRES, while flexibility only exerts short-term support after a disruption. The study additionally points to potential “spillover effects” such as the vital role of proactive SCRES in achieving reactive responsiveness.

Originality/value

The present study confirms and expands existing theories on SCRES. While stressing the multidimensionality of SCRES, it theorizes the (inter-)temporal evolution of a system and offers practical guidelines for SCRES building in various industrial contexts. It thus supports the transformation toward more resilient and viable supply chains, contributing to the increasing efforts of middle-range theory building to achieve an overarching theory. The study also points to potential future research avenues.

Details

International Journal of Physical Distribution & Logistics Management, vol. 54 no. 1
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 21 July 2023

Rajesh B. Pansare, Madhukar R. Nagare and Vaibhav S. Narwane

A reconfigurable manufacturing system (RMS) can provide manufacturing flexibility, meet changing market demands and deliver high performance, among other benefits. However…

97

Abstract

Purpose

A reconfigurable manufacturing system (RMS) can provide manufacturing flexibility, meet changing market demands and deliver high performance, among other benefits. However, adoption and performance improvement are critical activities in it. The current study aims to identify the important factors influencing RMS adoption and validate a conceptual model as well as develop a structural model for the identified factors.

Design/methodology/approach

An extensive review of RMS articles was conducted to identify the eight factors and 47 sub-factors that are relevant to RMS adoption and performance improvement. For these factors, a conceptual framework was developed as well as research hypotheses were framed. A questionnaire was developed, and 117 responses from national and international domain experts were collected. To validate the developed framework and test the research hypothesis, structural equation modeling was used, with software tools SPSS and AMOS.

Findings

The findings support six hypotheses: “advanced technologies,” “quality and safety practice,” “strategy and policy practice,” “organizational practices,” “process management practices,” and “soft computing practices.” All of the supported hypotheses have a positive impact on RMS adoption. However, the two more positive hypotheses, namely, “sustainability practices” and “human resource policies,” were not supported in the analysis, highlighting the need for greater awareness of them in the manufacturing community.

Research limitations/implications

The current study is limited to the 47 identified factors; however, these factors can be further explored and more sub-factors identified, which are not taken into account in this study.

Practical implications

Managers and practitioners can use the current work’s findings to develop effective RMS implementation strategies. The results can also be used to improve the manufacturing system’s performance and identify the source of poor performance.

Originality/value

This paper identifies critical RMS adoption factors and demonstrates an effective structural-based modeling method. This can be used in a variety of fields to assist policymakers and practitioners in selecting and implementing the best manufacturing system.

Graphical abstract

Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 November 2023

Sepehr Ghazinoory, Meysam Shirkhodaie and Mercedeh Pahlavanian

Fintechs are expected to develop rapidly as technologies that help improve the efficiency of the traditional financial system, but an examination of fintech subbranches shows…

Abstract

Purpose

Fintechs are expected to develop rapidly as technologies that help improve the efficiency of the traditional financial system, but an examination of fintech subbranches shows different behaviors. In some sub-branches, the transition has been accompanied by a higher speed and more success, but in some other sub-branches, the opposite has been observed. The difference in the development of fintech sub-branches and its reasons have been paid less attention. Therefore, this article aims to identify the factors affecting the transition.

Design/methodology/approach

The use of new technologies in financial services at the international level has led to the provision of fast, customized and economical services, and the fact that these services are welcomed by the users has created opportunities for fintech's transition. This qualitative research follows the socio-technical phenomenon of fintech transition through narrative research. For its formulation, the transition process of fintech sub-branches was analyzed based on the multi-level analytical framework and Geels et al.’s transition path theory.

Findings

Transition is a change from one socio-technical regime to another. The findings of the research showed that these changes are influenced by the following factors: provision of infrastructure, the support of industry incumbents from innovative financial services, policy-making, citizen's welcoming, improving the knowledge and expertise of actors, legal adjustments as well as provision of innovative services.

Originality/value

The fintech transition has a special nature because the speed of developments in fintech is high and there is a series of innovations that are continuously replaced by subsequent innovations. Existing models have often focused on the long-term transition of a technology. This article presents a new approach for the analysis of changes in the short term in such a way that, based on the position of the actors in favor of or against the technological changes and institutional changes of the transition, it has analyzed and identified the factors affecting the transition. By focusing on these factors, policymakers can direct the way of fintech transition and help accelerate and facilitate fintech transition.

Details

Journal of Service Theory and Practice, vol. 34 no. 2
Type: Research Article
ISSN: 2055-6225

Keywords

Article
Publication date: 6 September 2022

Rajesh Pansare, Gunjan Yadav and Madhukar R. Nagare

Because of the COVID-19 pandemic and changing market demands, competition for manufacturing industries is increasing and they face numerous challenges. In such a case, it is…

Abstract

Purpose

Because of the COVID-19 pandemic and changing market demands, competition for manufacturing industries is increasing and they face numerous challenges. In such a case, it is necessary to use multiple strategies, technologies and practices to improve organizational performance and, as a result, to integrate them for ease of adoption. The purpose of this research is to identify advanced Industry 4.0 technologies, operational excellence (OPEX) strategies and reconfigurable manufacturing system (RMS) practices. The study also computes their weights, as well as identifies and prioritizes the performance metrics for the same.

Design/methodology/approach

A thorough review of relevant articles was conducted to identify 28 OPEX strategies, RMS practices and advanced technologies, as well as the 17-performance metrics. The stepwise weight assessment ratio analysis approach was used to compute the weights of the selected practices, while the WASPAS approach was used to prioritize the performance metrics. While developing the framework, the industry expert’s expertise was incorporated in the form of their opinions for pairwise comparison.

Findings

According to the study findings, advanced Industry 4.0 technologies were the most prominent for improving organizational performance. As a result, integrating Industry 4.0 technologies with OPEX strategies can assist in improving the performance of manufacturing organizations. The prioritized performance metrics resulted in the production lead time ranking first and the use of advanced technologies ranking second. This emphasizes the significance of meeting dynamic customer needs on time while also improving quality with the help of advanced technologies.

Practical implications

The developed framework can help practitioners integrate OPEX strategies and advanced technologies into their organizations by adopting them in order of importance. Furthermore, the ranked performance metrics can assist managers and practitioners in evaluating the manufacturing system and, as a result, strategic planning for improvement.

Originality/value

According to the authors, this is a novel approach for integrating OPEX strategies with advanced Industry 4.0 technologies, and no comparable study has been found in the current literature.

Details

The TQM Journal, vol. 36 no. 1
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 28 March 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Induction heating processes need to adapt to complex geometries or variable processes that require a high degree of flexibility in the induction heating setup. This is usually…

Abstract

Purpose

Induction heating processes need to adapt to complex geometries or variable processes that require a high degree of flexibility in the induction heating setup. This is usually done using complex inductors or adaptable resonant tanks, which leads to costly and constrained implementations. This paper aims to propose a multi-level, versatile power supply able to adapt the output to the required induction heating process.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The methodology followed includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and laboratory tests after building a 10-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 1 kVpp and 100 A at 250 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced tests and processes on induction heating system. The proposed system allows for multifrequency generation using a single inductor and converter, or advanced tests for inductive and capacitive components used on induction heating systems. Unlike previous multifrequency proposals, the proposed generator enables a significantly improved versatility in terms of operational frequency and amplitude in a single converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 455