Search results

1 – 7 of 7
Article
Publication date: 17 May 2023

Rajini V., Jassem M., Nagarajan V.S., Sreeya Galla N.V. Sai and Jeyapradha Rb

Industrial drives require appropriate control systems for reliable and efficient performance. With synchronous reluctance machines (SynRMs) slowly replacing the most commonly used…

Abstract

Purpose

Industrial drives require appropriate control systems for reliable and efficient performance. With synchronous reluctance machines (SynRMs) slowly replacing the most commonly used induction, switched reluctance and permanent magnet machines, it is essential that the drive and its control be properly selected for enhanced performance. But the major drawback of synchronous reluctance motor is the presence of high torque ripple as its design is characterized by large number of variables. The solutions to reduce torque ripple include design modifications, choice of proper power electronic inverter and PWM strategy. But little has been explored about the power electronic inverters suited for synchronous reluctance motor drive to minimize torque ripple inherently by obtaining a more sinusoidal voltage. The purpose of this paper is to elaborate on the potential multilevel inverter topologies applicable to SynRM drives used in solar pumping applications.

Design/methodology/approach

The most significant field-oriented control using maximum torque per ampere algorithm for maximizing the torque production is used for the control of SynRM. Simulation results carried out using Matlab/Simulink are presented to justify the choice of inverter and its control technique for SynRM.

Findings

The five-level inverter drive gives lesser core or iron losses in the SynRMin comparison to the three- and two-level inverters due to lower Id current ripple. The five-level inverter reduces the torque ripple of the SynRM significantly in comparison to the three- and two-level inverter fed SynRM drives. The phase disposition-PWM control method used for the inverter shows the least total harmonic distortion (THD) levels in output voltage compared with the other level shifted PWM techniques.

Originality/value

Among the available topologies, a fitting topology is proposed for use for the SynRM drive to have minimal THD, minimal current and torque ripple. Additionally, this paper presents various modulation techniques available for the selected drive system and reports on a suitable technique based on minimal THD of output voltage and hence minimal torque ripple.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 April 2024

Guanglu Yang, Si Chen, Jianwei Qiao, Yubao Liu, Fuwen Tian and Cunxiang Yang

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet…

Abstract

Purpose

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet synchronous motor (HVLSPMSMS).

Design/methodology/approach

In this paper, the ampere–conductor wave model of HVLSPMSM after ITSF is established. Second, a mathematical model of the magnetic field after ITSF is established, and the influence law of the ITSF on the air-gap magnetic field is analyzed. Further, the mathematical expression of the electromagnetic force density is established based on the Maxwell tensor method. The impact of HVLSPMSM torque ripple frequency, radial electromagnetic force spatial–temporal distribution and rotor unbalanced magnetic tension force by ITSF is revealed. Finally, the electromagnetic–mechanical coupling model of HVLSPMSM is established, and the vibration spectra of the motor with different degrees of ITSF are solved by numerical calculation.

Findings

In this study, it is found that the 2np order flux density harmonics and (2 N + 1) p order electromagnetic forces are not generated when ITSF occurs in HVLSPMSM.

Originality/value

By analyzing the multi-harmonics of HVLSPMSM after ITSF, this paper provides a reliable method for troubleshooting from the perspective of vibration and torque fluctuation and rotor unbalanced electromagnetic force.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2024

Enes Mahmut Göker, Ahmet Fevzi Bozkurt and Kadir Erkan

The purpose of this paper is to introduce a novel cross (+) type yoke with hybrid electromagnets and new reluctance modeling to precisely calculate attraction force is given.

Abstract

Purpose

The purpose of this paper is to introduce a novel cross (+) type yoke with hybrid electromagnets and new reluctance modeling to precisely calculate attraction force is given.

Design/methodology/approach

The comparison of attraction force and torque analyses between the proposed formulation and the existing formulation in the literature is comparatively presented. For the correctness of the force and torque values calculated in the model created, the system was created in ANSYS Maxwell and its accuracy was proved by making analyses. The maglev carrier system is inherently unstable from the point of view of control engineering. For that, it needs an active controller to eliminate this instability. For the levitation of the carrier system, it is necessary to design a controller in three axes (z, α and β). I-PD controller was designed for the air gap control of the carrier system in three axes and the controller parameters were determined by the canonical method.

Findings

While the new formulation proposed in the modeling of the carrier system has a maximum error of 1.03%, the existing formula in the literature has an error of 16.83% in the levitation distance point.

Originality/value

A novel cross-type hybrid carrier system has been proposed in the literature. With the double integral used in modeling the system, it takes a long time to solve symbolically, and it is difficult to simulate dynamic behavior in control validation. To solve this problem, attraction force and inclination torque values are easily characterized by new formulation and besides the simulations are conducted easily. The experimental setup was manufactured and assembled, and the carrier system was successfully levitated, and reference tracking was performed without overshoot.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 18 March 2024

Jim Watterston, Janet Clinton, Sophia Arkoudis, Lorraine Graham, Suzanne Rice and John Quay

This chapter traces the journey of the Faculty of Education through the pandemic, charting some of the challenges and opportunities in leading teaching and learning, research…

Abstract

This chapter traces the journey of the Faculty of Education through the pandemic, charting some of the challenges and opportunities in leading teaching and learning, research, international and engagement activities while maintaining its staff's health and emotional well-being. The chapter concludes with six significant educational challenges amplified during COVID-19 that must be addressed. These insights provide a road map for how higher education and academia can emerge from the pandemic fit for purpose and ready to contribute to our nation's and the world's future.

Details

Building a Better Normal
Type: Book
ISBN: 978-1-80455-413-5

Keywords

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts, 2nd Edition
Type: Book
ISBN: 978-1-83753-438-8

Article
Publication date: 24 August 2023

Raghavendra Rao N.S. and Chitra A.

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Abstract

Purpose

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Design/methodology/approach

Industrial motor drive systems (IMDS) are currently expected to perform beyond the desired operating conditions to meet the demand. The PoF of the subsystem affects its reliability under such harsh operating circumstances. It is crucial to estimate reliability by integrating PoF, which helps in understanding its impact and to develop a fault-tolerant design, particularly in such an integrated drive system. An integrated PoF extended reliability method for industrial drive system is proposed to address this issue. In research, the numerical failure rate of each component of industrial drive is obtained first with the help of the MIL-HDBK-217 military handbook. Furthermore, the mathematically deduced proposed approach is modeled in the GoldSim Monte Carlo reliability workbench.

Findings

From the results, for a 15% rise in integrated PoF, the reliability and availability of the entire IMDS dropped by 23%, resulting in an impact on mean time to failure (MTTF).

Originality/value

The integrated PoF of the motor and motor controller affects industrial drive reliability, which falls to 0.18 with the least MTTF (2.27 years); whose overall reliability of industrial drive drops to 0.06 if it is additionally integrated with communication protocol.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 7 of 7