Search results

1 – 2 of 2
Open Access
Article
Publication date: 22 October 2021

Syed Farid Uddin, Ayan Alam Khan, Mohd Wajid, Mahima Singh and Faisal Alam

The purpose of this paper is to show a comparative study of different direction-of-arrival (DOA) estimation techniques, namely, multiple signal classification (MUSIC) algorithm…

1355

Abstract

Purpose

The purpose of this paper is to show a comparative study of different direction-of-arrival (DOA) estimation techniques, namely, multiple signal classification (MUSIC) algorithm, delay-and-sum (DAS) beamforming, support vector regression (SVR), multivariate linear regression (MLR) and multivariate curvilinear regression (MCR).

Design/methodology/approach

The relative delay between the microphone signals is the key attribute for the implementation of any of these techniques. The machine-learning models SVR, MLR and MCR have been trained using correlation coefficient as the feature set. However, MUSIC uses noise subspace of the covariance-matrix of the signals recorded with the microphone, whereas DAS uses the constructive and destructive interference of the microphone signals.

Findings

Variations in root mean square angular error (RMSAE) values are plotted using different DOA estimation techniques at different signal-to-noise-ratio (SNR) values as 10, 14, 18, 22 and 26dB. The RMSAE curve for DAS seems to be smooth as compared to PR1, PR2 and RR but it shows a relatively higher RMSAE at higher SNR. As compared to (DAS, PR1, PR2 and RR), SVR has the lowest RMSAE such that the graph is more suppressed towards the bottom.

Originality/value

DAS has a smooth curve but has higher RMSAE at higher SNR values. All the techniques show a higher RMSAE at the end-fire, i.e. angles near 90°, but comparatively, MUSIC has the lowest RMSAE near the end-fire, supporting the claim that MUSIC outperforms all other algorithms considered.

Open Access
Article
Publication date: 12 July 2023

Nicola Cobelli and Emanuele Blasioli

The purpose of this study is to introduce new tools to develop a more precise and focused bibliometric analysis on the field of digitalization in healthcare management…

1282

Abstract

Purpose

The purpose of this study is to introduce new tools to develop a more precise and focused bibliometric analysis on the field of digitalization in healthcare management. Furthermore, this study aims to provide an overview of the existing resources in healthcare management and education and other developing interdisciplinary fields.

Design/methodology/approach

This work uses bibliometric analysis to conduct a comprehensive review to map the use of the unified theory of acceptance and use of technology (UTAUT) and the unified theory of acceptance and use of technology 2 (UTAUT2) research models in healthcare academic studies. Bibliometric studies are considered an important tool to evaluate research studies and to gain a comprehensive view of the state of the art.

Findings

Although UTAUT dates to 2003, our bibliometric analysis reveals that only since 2016 has the model, together with UTAUT2 (2012), had relevant application in the literature. Nonetheless, studies have shown that UTAUT and UTAUT2 are particularly suitable for understanding the reasons that underlie the adoption and non-adoption choices of eHealth services. Further, this study highlights the lack of a multidisciplinary approach in the implementation of eHealth services. Equally significant is the fact that many studies have focused on the acceptance and the adoption of eHealth services by end users, whereas very few have focused on the level of acceptance of healthcare professionals.

Originality/value

To the best of the authors’ knowledge, this is the first study to conduct a bibliometric analysis of technology acceptance and adoption by using advanced tools that were conceived specifically for this purpose. In addition, the examination was not limited to a certain era and aimed to give a worldwide overview of eHealth service acceptance and adoption.

Details

The TQM Journal, vol. 35 no. 9
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 2 of 2