Search results

1 – 10 of over 1000
Article
Publication date: 3 August 2021

Sumathy P., Navamani Divya, Jagabar Sathik, Lavanya A., Vijayakumar K. and Dhafer Almakhles

This paper aims to review comprehensively the different voltage-boosting techniques and classifies according to their voltage gain, stress on the semiconductor devices, count of…

Abstract

Purpose

This paper aims to review comprehensively the different voltage-boosting techniques and classifies according to their voltage gain, stress on the semiconductor devices, count of the total components and their prominent features. Hence, the focus is on non-isolated step-up converters. The converters categorized are analyzed according to their category with graphical representation.

Design/methodology/approach

Many converters have been reported in recent years in the literature to meet our power requirements from mill watts to megawatts. Fast growth in the generation of renewable energy in the past few years has promoted the selection of suitable converters that directly impact the behaviour of renewable energy systems. Step-up converters are a fast-emerging switching power converter in various power supply units. Researchers are more attracted to the derivation of novel topology with a high voltage gain, low voltage and current stress, high efficiency, low cost, etc.

Findings

A comparative study is done on critical metrics such as voltage gain, switch voltage stress and component count. Besides, the converters are also summarized based on their advantages and disadvantages. Furthermore, the areas that need to be explored in this field are identified and presented.

Originality/value

Types of analysis usually performed in dc converter and their needs with the areas need to be focused are not yet completely reviewed in most of the articles. This paper gives an eyesight on these topics. This paper will guide the researchers to derive and suggest a suitable topology for the chosen application. Moreover, it can be used as a handbook for studying the various topologies with their shortfalls, which will provide a way for researchers to focus.

Article
Publication date: 4 January 2011

Dmitri Vinnikov and Juhan Laugis

The paper presents the findings of an R&D project connected to the development of 50 kW auxiliary power supply for the high‐voltage DC‐fed commuter trains. The aim was to…

Abstract

Purpose

The paper presents the findings of an R&D project connected to the development of 50 kW auxiliary power supply for the high‐voltage DC‐fed commuter trains. The aim was to introduce a new generation power converter utilizing high‐voltage insulated gate bibolar transistor (IGBT) modules, which can outpace the predecessors in terms of efficiency and power density, i.e. to provide more power for smaller volumetric space.

Design/methodology/approach

For development of the proposed converter, mathematical analysis and computer simulations were used. The software intended for simulations is Ansoft Simplorer, which is a mixed‐technology simulator for electrical, electromechanical, power electronic systems and drive applications. For the verification of theoretical results the full‐scale laboratory prototype of the proposed converter was developed and tested.

Findings

Thanks to increased switching frequency and current‐doubler rectifier (CDR) implemented in the proposed converter, the power dissipation of the isolation transformer was reduced by 30 percent as compared to earlier designs. Moreover, the 27 and 24 percent reductions in rectifier and inductor losses, respectively, led to approximately 1 percent efficiency rise of the proposed converter in comparison with its predecessors. Also, the proposed three‐level topology outpaces the two‐level one by more than 20 percent in terms of power density.

Practical implications

The proposed converter topology is aimed for the high‐voltage DC trains. With small modifications it also can be used in trams, trolleybuses as well as in some industrial applications.

Originality/value

The paper presents the novel DC/DC converter topology with 3.3 kV IGBT‐based three‐level neutral point clamped inverter, high‐frequency isolation transformer and the CDR.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Hanen Mejbri, Kaiçar Ammous, Slim Abid, Hervé Morel and Anis Ammous

– This paper aims to focus on the trade-off between losses and converter cost.

Abstract

Purpose

This paper aims to focus on the trade-off between losses and converter cost.

Design/methodology/approach

The continual development of power electronic converters, for a wide range of applications such as renewable energy systems (interfacing photovoltaic panels via power converters), is characterized by the requirements for higher efficiency and lower production costs. To achieve such challenging objectives, a computer-aided design optimization based on genetic algorithms is developed in Matlab environment. The elitist non-dominated sorting genetic algorithm is used to perform search and optimization, whereas averaged models are used to estimate power losses in different semiconductors devices. The design problem requires minimizing the losses and cost of the boost converter under electrical constraints. The optimization variables are, as for them, the switching frequency, the boost inductor, the DC capacitor and the types of semiconductor devices (IGBT and MOSFET). It should be pointed out that boost topology is considered in this paper but the proposed methodology is easily applicable to other topologies.

Findings

The results show that such design methodology for DC-DC converters presents several advantages. In particular, it proposes to the designer a set of solutions – as an alternative of a single one – so that the authors can choose a posteriori the adequate solution for the application under consideration. This then allows the possibility of finding the best design among all the available choices. Furthermore, the design values for the selected solution were obtainable components.

Originality/value

The authors focus on the general aspect of the discrete optimization approach proposed here. It can also be used by power electronics designers with the help of additional constraints in accordance with their specific applications. Furthermore, the use of such non-ideal average models with the multi-objective optimization is the original contribution of the paper and it has not been suggested so far.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 July 2021

Indira Damarla and Venmathi Mahendran

The main purpose of this paper is to propose a quasi-impedance source (QIS) converter fed switched reluctance motor (SRM) drive. The proposed converter topology is configured for…

Abstract

Purpose

The main purpose of this paper is to propose a quasi-impedance source (QIS) converter fed switched reluctance motor (SRM) drive. The proposed converter topology is configured for DC link capacitance minimization and power factor (PF) correction.

Design/methodology/approach

A QIS converter is used as a front end converter to reduce the bulk capacitance requirement during current commutation and to decline the power ripple. To improve the PF with reduced total harmonic distortion at the input current, the PF current control loop is merged with the QIS converter control loop.

Findings

The overall SRM drive speed is regulated over a wide range by controlling the DC link voltage. The voltage regulation can be achieved by pulse width modulation of the QIS converter. Hence, the overall system efficiency has been improved by operating the proposed converter at a low switching frequency. Moreover, the proposed QIS converter uses an advanced repetitive controller to achieve voltage regulation and fewer ripples in torque.

Originality/value

The steady state and dynamic analyzes have been performed on the proposed drive topology. The performance of the proposed topology has been simulated through MATLAB/Simulink environment. A hardware prototype with a processor of Xilinx SPARTAN 6 field-programmable gate array has been used to validate the experimental response with the simulation results.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 8 March 2011

Pietro Tricoli

The purpose of this paper is to suggest a new analytical methodology for transient analysis of DC‐DC power converters. The closed‐form solution obtained following this methodology…

Abstract

Purpose

The purpose of this paper is to suggest a new analytical methodology for transient analysis of DC‐DC power converters. The closed‐form solution obtained following this methodology is suitable both for design of passive elements of the converter and for the development of control techniques.

Design/methodology/approach

The methodology is based on a mixed use of Laplace transform and z‐transform. The expressions of variables of the set of equations, characteristic of a DC‐DC converter, are first evaluated in the Laplace domain for the generic switching interval. The solutions obtained are then z‐transformed in order that they match in each contiguous time interval, to form the complete transient response.

Findings

The new solution methodology allows the analytical determination of time constants of DC‐DC converters, also in presence of large duty‐cycle variations. Moreover, it is possible to evaluate easily the influence of passive elements on converter's behaviour, without several numerical simulations.

Originality/value

The analytical solution of linear systems is well known both in transient and in steady‐state conditions. However, when there is an infinite number of poles in the Laplace transform of the input signals, such as the case of switching power converters, the inversion in a closed form of the Laplace transform of the solution can be cumbersome. The methodology presented tries to overcome this problem by using an approach based on the z‐transform. Operating in this way, a closed‐form solution can be obtained both in transient and in steady‐state conditions, for all the main topologies of switching power converters. The procedure has been explained in detail for the sample case of boost DC‐DC converters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 September 2018

Kavitha Muppala Kumar, Kavitha A. and Christilda Nancy Duraisamy John

In the design and development stage of the power converter systems, an abnormal intermittency is naturally experienced in nonautonomous system because of coupling of the…

Abstract

Purpose

In the design and development stage of the power converter systems, an abnormal intermittency is naturally experienced in nonautonomous system because of coupling of the interference signals. The study of identifying the possible conditions at which such an undesirable operation emerges is vital. Hence, the purpose of this paper is to explore the intermittent instabilities that evolve in the voltage-mode controlled quadratic buck converter when the sinusoidal interference signal coupled in reference voltage.

Design/methodology/approach

Voltage-mode controlled quadratic buck converter with the sinusoidal interference signal coupled in reference voltage manifests a symmetrical period-doubling bifurcation in intermittent periods for significant interference signal strength with the frequency near to the switching frequency or its rational multiples. The complete dynamics of the system is investigated for the various inference signal frequencies by numerical simulations.

Findings

Here, the intermittent instabilities are verified using a simple Filippov’s method with supporting evidence of Floquet multipliers (eigenvalues) movement. The analytical result obtained is found to agree well with the simulation results.

Practical implications

Power supplies are liable to an ambiguous complex behavior when it is seldom protected against the interference signal. The experimental study has made an attempt to explicit a detailed behavior observed in voltage-mode controlled quadratic buck converter when a sinusoidal intruding signal of different amplitude and frequency are coupled with the reference voltage. Such an analysis gives considerable focus for the power electronics engineers to meet the design requirements.

Originality/value

To the authors’ knowledge, all the research works on intermittent instabilities in power converters are analyzed only using conventional method of Poincare map technique which emerges to be complicated when the order of the system is higher. Alternatively, in this paper, Filippov’s technique is used for stability analysis of periodic orbit. The evolution of bifurcation point is predicted by the calculating the Floquet multipliers of monodromy matrix, and it is known to achieve the same objective as the Poincare map technique in much more straightforward way.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 March 2011

Kirubakaran Dhandapani and Rama Reddy Sathi

The purpose of this paper is to present, a novel boost‐active clamp bridge single stage high‐frequency zero voltage soft‐switching‐pulse width modulation (ZVS‐PWM) inverter, which…

Abstract

Purpose

The purpose of this paper is to present, a novel boost‐active clamp bridge single stage high‐frequency zero voltage soft‐switching‐pulse width modulation (ZVS‐PWM) inverter, which converts the utility frequency AC power into high‐frequency AC power with an embedded controller. This single stage high‐frequency inverter is composed of a single‐phase diode bridge rectifier, a non‐smoothing filter, a boost‐active clamp bridge type ZVS‐PWM high‐frequency inverter, and an induction‐heated load with planar type litz wire working coil assembly. Also, the paper discusses how to extend the soft‐switching operation ranges and improve power conversion efficiency.

Design/methodology/approach

The proposed converter is simulated and it is implemented using embedded controller.

Findings

It was found that the single stage high‐frequency induction heating (IH) inverter using boosted voltage function can eliminate the DC and low‐frequency components of the working coil current and reduce the power dissipation of the circuit components and switching devices.

Originality/value

The paper shows that the PWM HF inverter is preferred for IH, since it has reduced switching losses and switching stresses. The paper can be extended to PC‐based wireless control, which can be part of a distributed control system in major industrial heating systems.

Details

Journal of Engineering, Design and Technology, vol. 9 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 January 2013

Ebrahim Babaei and Hamed Mashinchi Mahery

The purpose of this paper is to propose a new method for mathematical modeling of the buck dc‐dc converter in discontinuous conduction mode (DCM). By using the presented modeling…

Abstract

Purpose

The purpose of this paper is to propose a new method for mathematical modeling of the buck dc‐dc converter in discontinuous conduction mode (DCM). By using the presented modeling method, the analysis of the transient and the steady states of the buck dc‐dc converter can be performed.

Design/methodology/approach

The proposed method is based on the two Laplace and Z transforms. In the proposed method, at first, the equations of the inductor current and the capacitor voltage are obtained as the power switch is on and off. Then by using the Laplace and Z transforms, the obtained equations are solved and the relations of the inductor current and the output voltage are obtained. In the proposed method, the Laplace transform is used for determining of the general relations of the inductor current and the output voltage. Also the Z‐transform is used as a tool for determining the initial values of the inductor current and the output voltage.

Findings

The transient and the steady state response of the dc‐dc converter is analyzed by the proposed method. By using the Z‐transform, the transient response of the converter and the effect of the elements of the converter on the time constant of the transient response are investigated. In addition, the effect of the elements of the converter and the load resistance on the electrical parameters of the converter such as the output voltage ripple and the inductor current ripple are investigated.

Originality/value

The proposed method in this paper is a suitable method for mathematical modeling of dc‐dc converters. The acernote of this method is that it can be used in both transient and steady state response, analysis of the dc‐dc converters. By using the final value theorem of the Z‐transform, the steady state response of the converter is investigated. Also by using this transform, the time constants of the transient response of the converter are determined. Finally, the results of the theoretical analysis are compared with the results of simulation in PSCAD/EMTDC and also the experimental results to prove the validity of the presented subjects.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 March 2019

Durga Devi R. and Nageswari S.

The purpose of this paper is to propose a mathematical model for voltage super-lift dc-dc power converter in continuous conduction mode (CCM). Using the presented mathematical…

Abstract

Purpose

The purpose of this paper is to propose a mathematical model for voltage super-lift dc-dc power converter in continuous conduction mode (CCM). Using the presented mathematical model, the analysis of dynamics of power stage for voltage super-lift dc-dc power converter can be performed.

Design/methodology/approach

The proposed method is based on the average state space model using the state equations of the dc-dc power converter. In the proposed method, the converter is represented as a set of differential equations derived for each switching state of the power switch in terms of inductor current and capacitor voltage. The proposed method describes the dynamic behaviour of the system. The controller is designed to meet performance requirement of the system such as to maintain the dynamics such as stability, steady-state accuracy and the speed of response of the system. Using the obtained model, the analysis of dynamic response of the voltage super-lift dc-dc power converter can be performed.

Findings

The converter is modelled and verified using conventional circuit analysis method employing state-space averaging technique, and their corresponding transfer function is also derived. The dynamics of the converter is investigated using frequency response characteristics obtained using MATLAB programming environment. In addition, to improve the stability of the converter, proportional-integral controller is designed using Ziegler–Nichols tuning rules, and the effect of the compensator in the plant is also investigated.

Originality/value

The proposed method can be used for analysing the dynamics of power stage for voltage super-lift DC-DC power converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Indrek Roasto and Dmitri Vinnikov

This paper is devoted to the quasi‐Z‐source (qZS) converter family. Recently, the qZS‐converters have attracted high attention because of their specific properties of voltage…

Abstract

Purpose

This paper is devoted to the quasi‐Z‐source (qZS) converter family. Recently, the qZS‐converters have attracted high attention because of their specific properties of voltage boost and buck functions with a single switching stage. As main representatives of the qZS‐converter family, this paper aims to discuss the traditional quasi‐Z‐source inverter as well as two novel extended boost quasi‐Z‐source inverters.

Design/methodology/approach

Steady state analysis of the investigated topologies operating in the continuous conduction mode is presented. Input voltage boost properties of converters are compared for an ideal case. Mathematical models of converters considering losses in components are derived. Practical boost properties of converters are compared to idealized ones and the impact of losses on the voltage boost properties of each topology is justified. Finally, the impact of losses in the components on the boost conversion efficiency is analyzed.

Findings

To demonstrate the impact of component losses on the overall efficiency of the qZS‐converter, a number of experiments were performed. The impact of inductor winding resistance was compared with the forward voltage drop of qZS‐network diodes. It was found that the forward voltage drop of diodes has the highest effect on the efficiency. If the diodes are replaced with high‐power Schottky rectifiers with a low forward voltage drop (UD=0.6 V), the effective efficiency rise by at least 5 percent could be expected for all three qZS‐converter topologies. For the same operating parameters and component values, the traditional qZS‐converter had the highest efficiency of the qZS‐converter family. The boost converter was compared with the traditional qZS converter in terms of efficiency. It was found that the boost converter has an efficiency 2 percent higher in the boost operation mode and approximately the same efficiency in the non‐boost operation.

Practical implications

The paper provides a good theoretical background for further practical studies. qZS‐converters have voltage boost and buck functions with a single switching stage, which could be especially advantageous in renewable energy applications.

Originality/value

The paper presents a detailed study of the qZS‐converter family. Mathematical models of converters considering losses in components are derived. It is the first time the boost converter is compared with the qZS converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000