Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 4 of 4
To view the access options for this content please click here
Article
Publication date: 1 January 2013

Effect of MHD and heat generation on natural convection flow in an open square cavity under microgravity condition

Suvash C. Saha

The purpose of this paper is to numerically study thermo‐magnetic convection and heat transfer of paramagnetic fluid placed in a micro‐gravity condition (g≈0) and under a…

HTML
PDF (566 KB)

Abstract

Purpose

The purpose of this paper is to numerically study thermo‐magnetic convection and heat transfer of paramagnetic fluid placed in a micro‐gravity condition (g≈0) and under a uniform vertical gradient magnetic field in an open square cavity with three cold sidewalls.

Design/methodology/approach

This magnetic force is proportional to the magnetic susceptibility and the gradient of the square of the magnetic induction. The magnetic susceptibility is inversely proportional to the absolute temperature based on Curie's law. Thermal convection of a paramagnetic fluid can therefore take place even in a zero‐gravity environment as a direct consequence of temperature differences occurring within the fluid due to a constant internal heat generation placed within a magnetic field gradient.

Findings

Effects of magnetic Rayleigh number, γRa, Prandtl number, Pr, and paramagnetic fluid parameter, m, on the flow pattern and isotherms as well as on the heat absorption are presented graphically. It is found that the heat transfer rate is suppressed in increased of the magnetic Rayleigh number and the paramagnetic fluid parameter for the present investigation.

Originality/value

It is possible to control the buoyancy force by using the super conducting magnet. To the best knowledge of the author no literature related to magnetic convection for this configuration is available.

Details

Engineering Computations, vol. 30 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/02644401311285982
ISSN: 0264-4401

Keywords

  • Heat generation
  • MHD
  • Paramagnetic fluid
  • Thermo‐magnetic convection
  • Microgravity
  • Convection
  • Heat

To view the access options for this content please click here
Article
Publication date: 9 November 2012

MHD natural convection flow from an isothermal horizontal circular cylinder under consideration of temperature dependent viscosity

Mamun Molla, Suvash C. Saha and M.A.I. Khan

The purpose of this paper is to discuss, with numerical simulations, magnetohydrodynamic (MHD) natural convection laminar flow from an isothermal horizontal circular…

HTML
PDF (159 KB)

Abstract

Purpose

The purpose of this paper is to discuss, with numerical simulations, magnetohydrodynamic (MHD) natural convection laminar flow from an isothermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature.

Design/methodology/approach

The governing boundary layer equations are transformed into a non‐dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form, which are solved numerically by two very efficient methods: implicit finite difference method together with Keller box scheme; and direct numerical scheme.

Findings

Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin‐friction coefficient and the local Nusselt number for a wide range of MHD parameter, viscosity‐variation parameter and viscous dissipation parameter.

Originality/value

MHD flow in this geometry with temperature dependent viscosity is absent in the literature. IN this paper, the results obtained from the numerical simulations have been verified by two methodologies.

Details

Engineering Computations, vol. 29 no. 8
Type: Research Article
DOI: https://doi.org/10.1108/02644401211271636
ISSN: 0264-4401

Keywords

  • Laminar flow
  • Convection
  • Viscosity
  • Natural convection
  • Magnetohydrodynamic
  • Temperature dependent viscosity
  • Horizontal circular cylinder

To view the access options for this content please click here
Article
Publication date: 1 August 2016

Effect of rotating cylinder on heat transfer in a differentially heated rectangular enclosure filled with power law non-Newtonian fluid

Atta Sojoudi, Marzieh Khezerloo, Suvash C Saha and Yuantong Gu

The purpose of this paper is to numerically investigate two dimensional steady state convective heat transfer in a differentially heated square cavity with constant…

HTML
PDF (12.2 MB)

Abstract

Purpose

The purpose of this paper is to numerically investigate two dimensional steady state convective heat transfer in a differentially heated square cavity with constant temperatures and an inner rotating cylinder. The gap between the cylinder and the enclosure walls is filled with power law non-Newtonian fluid.

Design/methodology/approach

Finite volume-based CFD software, Fluent (Ansys 15.0) is used to solve the governing equations. Attribution of the various flow parameters of fluid flow and heat transfer are investigated including Rayleigh number, Prandtl number, power law index, the cylinder radius and the angular rotational speed.

Findings

Outcomes are reported in terms of isotherms, streamlines and average Nusselt number (Nu) of the heated wall for various considered here.

Research limitations/implications

A detailed investigates is needed in the context of 3D flow. This will be a part of the future work.

Practical implications

The effect of a rotating cylinder on heat transfer and fluid flow in a differentially heated rectangular enclosure filled with power law non-Newtonian fluid has practical importance in the process industry.

Originality/value

The results of this study may be of some interest to the researchers of the field of chemical or process engineers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
DOI: https://doi.org/10.1108/HFF-01-2015-0007
ISSN: 0961-5539

Keywords

  • Heat transfer
  • Power law non-Newtonian fluid
  • Rectangular enclosure
  • Rotating cylinder

To view the access options for this content please click here
Article
Publication date: 7 September 2015

Two-phase natural convection flow of a dusty fluid

Sadia Siddiqa, M. Anwar Hossain and Suvash C Saha

The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary…

HTML
PDF (280 KB)

Abstract

Purpose

The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow of a two-phase particulate suspension is investigated numerically over a semi-infinite vertical flat plate. Comprehensive flow formations of the gas and particle phases are given in the boundary layer region. Primitive variable formulation is employed to convert the nondimensional governing equations into the non-conserved form. Three important two-phase mechanisms are discussed, namely, water-metal mixture, oil-metal mixture and air-metal mixture.

Design/methodology/approach

The full coupled nonlinear system of equations is solved using implicit two point finite difference method along the whole length of the plate.

Findings

The authors have presented numerical solution of the dusty boundary layer problem. Solutions obtained are depicted through the characteristic quantities, such as, wall shear stress coefficient, wall heat transfer coefficient, velocity distribution and temperature distribution for both phases. Results are interpreted for wide range of Prandtl number Pr (0.005-1,000.0). It is observed that thin boundary layer structures can be formed when mass concentration parameter or Prandtl number (e.g. oil-metal particle mixture) are high.

Originality/value

The results of the study may be of some interest to the researchers of the field of chemical engineers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
DOI: https://doi.org/10.1108/HFF-09-2014-0278
ISSN: 0961-5539

Keywords

  • Natural convection
  • Boundary layer
  • Dusty gas
  • Two-phase
  • Dusty fluid
  • Particulate suspension

Access
Only content I have access to
Only Open Access
Year
  • All dates (4)
Content type
  • Article (4)
1 – 4 of 4
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here