Search results

1 – 10 of 165
Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 26 December 2023

Ting Dai and Chang Tao

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but…

Abstract

Purpose

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but also changes along time. A thermal conductivity prediction model for aerogel considering heat treatment effect is carried out and applied to solve the heat conduction problem of a TPS. The aim of this study is to provide theoretical and numerical references for further development of aerogels applying to TPSs.

Design/methodology/approach

A thermal conductivity prediction model for aerogel is established considering treatment effect. The heat conduction problem of a TPS is derived and solved by combining the differential quadrature method and the Runge–Kutta method. The prediction results of aerogel thermal conductivities are verified by comparing with those in literature, while the calculated temperature field of TPS is verified by comparing with that by ABAQUS.

Findings

Numerical results show that when applying the current prediction model, the calculated high temperature area in the aerogel layer is narrowed due to the decrease of the thermal conductivity during heat treatment process.

Originality/value

This study will be beneficial to carry out the precise design of TPS for long endurance HFVs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 September 2022

Saima Habib, Farzana Kishwar and Zulfiqar Ali Raza

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may…

Abstract

Purpose

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may provide an ideal enclave for microbial growth due to their biodegradable nature and retention of certain nutrients and moisture usually required for microbial colonization. The application of antibacterial finish on the textile surfaces is usually done via synthetic cross-linkers, which, however, may cause toxic effects and halt the biodegradation process.

Design/methodology/approach

Herein, we incorporated citrate moieties on the cellulosic fabric as eco-friendly crosslinkers for the durable and effective application of nanosilver finish. The nanosilver finish was then applied on the citrate-treated cellulosic fabric under the pad-dry-cure method and characterized the specimens for physicochemical, textile and antibacterial properties.

Findings

The results expressed that the as-prepared silver particles possessed spherical morphology with their average size in the nano range and zeta potential being −40 ± 5 mV. The results of advanced analytical characterization demonstrated the successful application of nanosilver on the cellulosic surface with appropriate dispersibility.

Practical implications

The nanosilver-treated fabric exhibited appropriate textile and comfort and durable broad-spectrum antibacterial activity.

Originality/value

The treated cellulosic fabric expressed that the cross-linking, crystalline behavior, surface chemistry, roughness and amphiphilicity could affect some of its comfort and textile properties yet be in the acceptable range for potential applications in medical textiles and environmental sectors.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 March 2022

Md Mehedi Hasan Rubel, Syed Rashedul Islam, Abeer Alassod, Amjad Farooq, Xiaolin Shen, Taosif Ahmed, Mohammad Mamunur Rashid and Afshan Zareen

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method…

Abstract

Purpose

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method to clean the wastewater containing reactive dye. Moreover, TiO2 nano-materials are remarkable due to their photoactive properties and valuable applications in wastewater treatment.

Design/methodology/approach

In this research, TiO2 was synthesized and deposited effectively on cotton fibers and cellulose powder using ultrasound-assisted coating. Further, tetra butyl titanate was used as a precursor to the synthesis of TiO2 nanoparticles. Reactive dye (red 195) was used in this study. X-ray Diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy were performed to prove the aptitude for the formation of crystal TiO2 on the cotton fibers and cellulose powder along with TiO2 nanoparticles as well as to analyze the chemical structure. Decoloration of the wastewater was investigated through ultraviolet (UV-Visible) light at 30 min.

Findings

The experimental results revealed that the decolorization was completed at 2.0 min with the cellulose nano TiO2 treatment whereas cotton nano TiO2 treated solution contained reactive dyestuffs even after the treatment of 2 min. This was the fastest method up to now than all reported methods for sustainable decolorization of wastewater by absorption. Furthermore, this study explored that the cellulose TiO2 nano-composite was more effective than the cotton TiO2 nano-composite of decoloration wastewater for the eco-friendly remedy.

Research limitations/implications

Cotton fibers and cellulose powder with nano-TiO2, and only reactive dye (red 195) were tested.

Practical implications

With reactive dye-containing wastewater, it seems to be easier to get rid of the dye than to retain it, especially from dyeing of yarn, fabric, apparel, and as well as other sectors where dyestuffs are used.

Social implications

This research would help to reduce pollution in the environment as well as save energy and cost.

Originality/value

Decoloration of wastewater treatment is an essential new track with nano-crystalline TiO2 to fast and efficient cleaning of reactive dyes containing wastewater used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 October 2022

Eman Salim, Wael S. Mohamed and Rasha Sadek

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such…

Abstract

Purpose

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such as papyrus sheets and paper, which are the most common types of writing supports for works of art in many museums and archive. They are subjected to different types of deterioration factors that may lead to many conservation problems. Consolidation treatment is one of the most common conservation treatments, which should have perform after much testing to select the appropriate consolidants.

Design/methodology/approach

This research paper aims to evaluate the resistance of traditional chitosan, nanochitosan and chitosan/zinc oxide nanocomposite as an eco-friendly papyrus strengthening. Untreated and treated papyrus was thermally aged and characterized via scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the papyrus specimens was also determined against four tested pathogenic bacteria by disc diffusion method: MRSA, Staphylococcus aureus, E. coli and P. aeruginosa.

Findings

The results revealed that chitosan nanocomposite showed a remarkable enhancement of papyrus tensile properties and presence of ZnO prevents the effects of biodeterioration.

Originality/value

Zinc oxide nanoparticles enhance the optical properties and increase the chemical reactions between the consolidating material and the treated papyrus.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 January 2024

Meigui Yin, Lei Zhang and Longxiang Huang

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Abstract

Purpose

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Design/methodology/approach

A high-temperature steam generator was applied to salt spray test samples, a fretting wear rig was used to realize the damage behavior tests, an electrochemical workstation was applied to analysis the changes of each sample’s corrosion dynamic response before and after fretting wear.

Findings

The thickness of the oxide film that formed on sample surface was increased with the salt spray duration, and somewhat it could act as lubrication during the fretting wear process; however, the corrosive chloride would accelerate the fretting mechanical damage behavior.

Originality/value

In a salt steam spray condition, the fretting tribo-corrosion behaviors of Inconel 690 alloy surface was studied.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 March 2024

Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…

Abstract

Purpose

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.

Design/methodology/approach

2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.

Findings

The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.

Originality/value

Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 February 2024

Rahim Şibil

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and…

Abstract

Purpose

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and the influence of different vegetation covers in different layers.

Design/methodology/approach

Ansys Fluent, a computational fluid dynamics software, was used to calculate the flow and turbulence characteristics using a three-dimensional, turbulent (k-e realizable), incompressible and steady-flow assumption, along with various near-wall treatment approaches (standard, scalable, non-equilibrium and enhanced) in the vegetated channel. The numerical study was validated concerning an experimental study conducted in the existing literature.

Findings

The numerical model successfully predicted experimental results with relative error rates below 10%. It was determined that nonequilibrium wall functions exhibited the highest predictive success in experiment Run 1, standard wall functions in experiment Run 2 and enhanced wall treatments in experiment Run 3. This study has found that plant growth significantly alters open channel flow. In the contact zones, the velocities and the eddy viscosity are low, while in the free zones they are high. On the other hand, the turbulence kinetic energy and turbulence eddy dissipation are maximum at the solid–liquid interface, while they are minimum at free zones.

Originality/value

This is the first study, to the best of the author’s knowledge, concerning the performance of different near-wall treatment approaches on the prediction of vegetation-covered open channel flow characteristics. And this study provides valuable insights to improve the hydraulic performance of open-channel systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 165