Search results

1 – 10 of 83
Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 January 2024

Zhaozhi Li, Changfu Zhang, Hairong Zhang, Haihui Liu, Zhao Zhu and Liucheng Wang

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn…

Abstract

Purpose

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn alloy.

Design/methodology/approach

The effects of machining parameters (electrolyte type, grinding wheel granularity, applied voltage, grinding wheel speed and machining time) on the MRR and surface roughness are investigated with experiments.

Findings

The experiment results show that an electroplated diamond grinding wheel of 46# and 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte is more suitable to be applied in U71Mn ECG. And the MRR and surface roughness are affected by machining parameters such as applied voltage, grinding wheel speed and machining time. In addition, the maximum MRR of 0.194 g/min is obtained with the 15 Wt.% NaCl electrolyte, 17 V applied voltage, 1,500 rpm grinding wheel speed and 60 s machining time. The minimum surface roughness of Ra 0.312 µm is obtained by the 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte, 13 V applied voltage, 2,000 rpm grinding wheel speed and 60 s machining time.

Originality/value

Under the electrolyte scouring effect, the products and the heat generated in the machining can be better discharged. ECG has the potential to improve MRR and reduce surface roughness in machining U71Mn.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0341/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 January 2024

Muhammet Uludag and Osman Ulkir

In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In…

Abstract

Purpose

In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In the experimental studies, the surface quality of the gripper was examined by determining four different levels and factors. The experiment was designed to estimate the surface roughness of the SPG.

Design/methodology/approach

The methodology consists of an experimental phase in which the SPG is fabricated and the surface roughness is measured. Thermoplastic polyurethane (TPU) flex filament material was used in the fabrication of SPG. The control factors used in the Taguchi L16 vertical array experimental design and their level values were determined. Analysis of variance (ANOVA) was performed to observe the effect of printing parameters on the surface quality. Finally, regression analysis was applied to mathematically model the surface roughness values obtained from the experimental measurements.

Findings

Based on the Taguchi signal-to-noise ratio and ANOVA, layer height is the most influential parameter for surface roughness. The best surface quality value was obtained with a surface roughness value of 18.752 µm using the combination of 100 µm layer height, 2 mm wall thickness, 200 °C nozzle temperature and 120 mm/s printing speed. The developed model predicted the surface roughness of SPG with 95% confidence intervals.

Originality/value

It is essential to examine the surface quality of parts fabricated in additive manufacturing using different variables. In the literature, surface roughness has been examined using different factors and levels. However, the surface roughness of a soft gripper fabricated with TPU material has not been examined previously. The surface quality of parts fabricated using flexible materials is very important.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 August 2023

Siva Sankara Rao Yemineni, Mallikarjuna Rao Kutchibotla and Subba Rao V.V.

This paper aims to analyze deeply the effect of surface roughness conditions of the common interface of the two-layered riveted cantilever beams on their frictional damping during…

Abstract

Purpose

This paper aims to analyze deeply the effect of surface roughness conditions of the common interface of the two-layered riveted cantilever beams on their frictional damping during free lateral vibration at first mode. Here, the product, (µ × α), and damping ratio, ξ, are the parameters whose variations are analyzed in this investigation. For this, the influencing parameters considered are the natural frequency of vibration, f; the amplitude of initial excitation, y; and surface roughness value, Ra.

Design/methodology/approach

For experimentally evaluating logarithmic damping decrement, d, the frequency response function analyzer for the case of free lateral vibrations was used. Later, for evaluating the product, µ × α (where µ is the kinematic coefficient of friction and α is the dynamic slip ratio), and then, the damping ratio, ξ, the empirical relation suggested for logarithmic damping decrement, d, of riveted cantilever beams was used. After this, the full and reduced quadratic models of the product, µ × α, ξ, response surface methodology (RSM) with the help of Design Expert 11 software was used. Corresponding main effects plots, surface plots and prediction comparison plots were obtained to observe the variations of the product, µ × α, ξ for the variations of influencing parameters: f, y and Ra. Finally, a machine learning technique such as artificial neural networks (ANNs) using “nntool” present in MATLAB R13a software was used to predict the ξ for the different combinations of f, y and Ra.

Findings

The full and reduced quadratic regression models for the product, (µ × α) and the damping ratio, ξ of riveted cantilever beams for free lateral vibrations of the first mode in terms of the parameters: f, y and Ra were obtained. In addition, the main effects plots, surface plots and prediction comparison plots for the product, µ × α, ξ, with the corresponding experimental values of the product, µ × α, ξ, were obtained. Also, the execution of ANNs using MATLAB R13a software is proved to be the more accurate tool for the prediction of damping ratios in comparison to quadratic regression equations obtained from Design Expert 11 software. In the end, the assumption that the effect of surface roughness value on the product, (µ × α), and the damping ratio, ξ, is negligible is proved to be true using the main effects plots for the product, (µ × α) and ξ obtained from the Design Expert 11 software.

Originality/value

Obtaining the full and reduced quadratic regression equations for the product, (µ × α), and ξ of the two-layered riveted cantilever beams in terms of parameters: f, y and Ra was done. In addition, the conditions for the corresponding minimum and maximum values of the product, (µ × α), and ξ were obtained. Later, the main effects plots, surface plots and comparison plots of the predicted product, (µ × α), and ξ versus experimental product, (µ × α), and ξ were also obtained. Finally, the predicted values of the product, (µ × α), and ξ using the ANNs tool are observed to be the more accurate values in comparison to that obtained from RSM using the Design Expert 11 software.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2024

Ferhat Ceritbinmez and Ali Günen

This study aims to comparatively analyze the cut parts obtained as a result of cutting the Ni-based Inconel 625 alloy, which is widely used in the aerospace industry, with the…

Abstract

Purpose

This study aims to comparatively analyze the cut parts obtained as a result of cutting the Ni-based Inconel 625 alloy, which is widely used in the aerospace industry, with the wire electro-discharge machining (WEDM) and abrasive water jet machining (AWJM) methods in terms of macro- and microanalyses.

Design/methodology/approach

In this study, calipers, Mitutoyo SJ-210, Nikon SMZ 745 T, scanning electron microscope and energy dispersive X-ray were used to determine kerf, surface roughness and macro- and microanalyses.

Findings

Considering the applications in the turbine industry, it has been determined that the WEDM method is suitable to meet the standards for the machinability of Inconel 625 alloy. In contrast, the AWJM method does not meet the standards. Namely, while the kerf angle was formed because the hole entrance diameters of the holes obtained with AWJM were larger than the hole exit diameters, the equalization of the hole entry and exit dimensions, thanks to the perpendicularity and tension sensitivity of the wire electrode used in the holes drilled with WEDM ensured that the kerf angle was not formed.

Originality/value

It is known that the surface roughness of the parts used in the turbine industry is accepted at Ra = 0.8 µm. In this study, the average roughness value obtained from the successful drilling of Inconel 625 alloy with the WEDM method was 0.799 µm, and the kerf angle was obtained as zero. In the cuts made with the AWJM method, thermal effects such as debris, microcracks and melted materials were not observed; an average surface roughness of 2.293 µm and a kerf of 0.976° were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 May 2023

Rensheng Wang, Cong Sun, Shichao Xiu, Qi Wang, Xiaohua Zhang and Qi Zhao

This paper aims to study the influence of the different parameters of magnetorheological polishing fluids (MRP fluids) on the surface roughness and material removal rate (MRR) of…

Abstract

Purpose

This paper aims to study the influence of the different parameters of magnetorheological polishing fluids (MRP fluids) on the surface roughness and material removal rate (MRR) of the workpiece surface in the reciprocating magnetorheological polishing (RMRP) process.

Design/methodology/approach

A series of single-factor experiments are performed to evaluate the influence of the concentration of magnetic particles, concentration of abrasive particles and size of abrasive particles on surface processing effects by using the RMRP method. Moreover, the yield stress and viscosity of MRP fluids are studied based on the Bingham plastic model by varying the MRP fluids parameters.

Findings

A reasonable parameter of MRP fluids is crucial to the surface roughness and MRR of the workpiece surface, and the optimized parameters are obtained by the single-factor experiments of RMRP. The results are when the concentration of carbonyl iron particles is 40 Vol.%, the concentration of CeO2 is 5 Vol.% and the size of CeO2 is 2.5 µm in the MRP fluids, the surface roughness of the workpiece remarkably decreases to 28 nm from the initial 332 nm and the MRR of the workpiece increases to 0.118 mg/min.

Originality/value

In this study, the single-factor experiments for the different parameters of MRP fluids are studied to polish K9 glass by using the RMRP device, and the yield stress and viscosity of MRP fluids are investigated by rheological experiments, which provides reference for a reasonable selection of the MRP fluids parameter in RMRP process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2023

Yuzhu Han, Jieshi Chen, Shuye Zhang and Zhishui Yu

This paper aims to investigate the effect of solder composition and roughness on early wetting behavior and interfacial reaction under atmospheric conditions.

Abstract

Purpose

This paper aims to investigate the effect of solder composition and roughness on early wetting behavior and interfacial reaction under atmospheric conditions.

Design/methodology/approach

High-speed photography is used to observe the early wetting and spreading process of the solder on the substrate in real time. The morphology of intermetallic compounds (IMCs) was observed by scanning electron microscopy, and the composition of IMCs micro bumps was determined by energy dispersive spectroscopy.

Findings

With a roughness range of 0.320–0.539 µm, the solder is distributed in an elliptical trilinear pattern along the grinding direction. With a roughness range of 0.029–0.031 µm, the solder spreads in the direction of grinding and perpendicular, forming a perfect circle (except in the case of Sn63Pb37 solder). The effect of three types of solder on early wettability is Sn63Pb37 > Sn96.5Ag3Cu0.5 > Sn. The wetting behavior is consistent with the Rn∼t model. The rapid spreading stage (Stage I) is controlled by the interfacial reaction with n1 values between 2.4 and 4. The slow spreading stage (stage II) is controlled by diffusion with n2 values between 4 and 6.7. The size of Cu6Sn5 formed on a rough substrate is greater than that produced on a smooth substrate.

Originality/value

Investigating the effect of solder composition and roughness on early wettability. This will provide a powerful guide in the field of soft brazing.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 August 2022

Shailendra Chauhan, Rajeev Trehan and Ravi Pratap Singh

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting…

Abstract

Purpose

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting parameters. The various impact of cutting parameters on chip morphology was also analyzed. Superalloys, often referred to as heat-resistant alloys, have exceptional tensile, ductile and creep strength at high operating temperatures and good fatigue strength, and often better corrosion and oxidation resistance at extreme heat. Because of these qualities, these alloys account for more than half of the weight of sophisticated aviation, biomedical and thermal power plants today. Inconel X-750 is a high-temperature nickel-based superalloy that is hard to machine because of its extensive properties. At last, the discussion regarding the tool wear mechanism was analyzed and discussed in this article.

Design/methodology/approach

The machining parameters for the study are cutting speed, feed rate and depth of cut. One factor at a time approach was implemented to investigate the effect of cutting parameters on the cutting forces, surface roughness and material removal rate. The scatter plot was plotted between cutting parameters and target functions (cutting forces, surface roughness and material removal rate). The six levels of cutting speed, feed rate and depth of cut were taken as cutting parameters.

Findings

The cutting forces are primarily affected by the cutting parameters, tool geometry, work material etc. The maximum forces Fx were encountered at 10 mm/min cutting speed, 0.15 mm/rev feed rate and 0.4 mm depth of cut, further maximum forces Fy were attained at 10 mm/min cutting speed, 0.25 mm/rev feed rate and 0.4 mm depth of cut and maximum forces Fz were attained at 50 mm/min cutting speed, 0.05 mm/rev feed rate and 0.4 mm depth of cut. The maximum surface roughness value was observed at 40 mm/min cutting speed, 0.15 mm/rev feed rate and 0.5 mm depth of cut.

Originality/value

The effect of machining parameters on cutting forces, surface roughness, chip morphology and tool wear for milling of Inconel X-750 high-temperature superalloy is being less researched in the present literature. Therefore, this research paper will give a direction for researchers for further studies to be carried out in the domain of high-temperature superalloys. Furthermore, the different tool wear mechanisms at separate experimental trials have been explored to evaluate and validate the process performance by conducting scanning electron microscopy analysis. Chip morphology has also been evaluated and analyzed under the variation of selected process inputs at different levels.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 November 2023

Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu and S.V.S. Narayana Murty

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and…

Abstract

Purpose

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.

Design/methodology/approach

In order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.

Findings

Finally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.

Practical implications

Based on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.

Originality/value

Even though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 January 2024

Talwinder Singh

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly…

Abstract

Purpose

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly nanofluid minimum quantity lubrication (NMQL) environment to minimize cutting tool flank wear (Vb) and machined surface roughness (Ra).

Design/methodology/approach

The central composite rotatable design approach under response surface methodology (RSM) is adopted to prepare a design of experiments plan for conducting turning experiments.

Findings

The optimum value of input turning parameters: cutting speed (A), feed rate (B) and depth of cut (C) is found as 79.88 m/min, 0.1 mm/rev and 0.2 mm, respectively, with optimal output response parameters: Vb = 138.633 µm and Ra = 0.462 µm at the desirability level of 0.766. Feed rate: B and cutting speed: A2 are the leading model variables affecting Vb, with a percentage contribution rate of 12.06% and 43.69%, respectively, while cutting speed: A and feed rate: B are the significant factors for Ra, having a percentage contribution of 38.25% and 18.03%, respectively. Results of validation experiments confirm that the error between RSM predicted and experimental observed values for Vb and Ra is 3.28% and 3.75%, respectively, which is less than 5%, thus validating that the formed RSM models have a high degree of conformity with the obtained experimental results.

Practical implications

The outcomes of this research can be used as a reference machining database for various metal cutting industries to establish eco-friendly NMQL practices during the turning of superalloy Inconel 718 to enhance cutting tool performance and machined surface integrity.

Originality/value

No study has been communicated till now on the turning of Inconel 718 under NMQL conditions using olive oil blended with multi-walled carbon nanotubes-based nanofluid.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0317/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 83