Search results

1 – 10 of over 12000
Article
Publication date: 1 June 1973

P.L. Hurricks

The reduction of wear by the use of sprayed surface coatings holds considerable potential at a time when Industry is becoming more conscious of the need to reduce its operating…

Abstract

The reduction of wear by the use of sprayed surface coatings holds considerable potential at a time when Industry is becoming more conscious of the need to reduce its operating costs. Control of wear is unlikely to become a true science due to the arbitrary nature of the conditions that produce the effect and although no truly economic solution exists for completely preventing surface degradation, it can be minimized to acceptable limits. It is the purpose of this article to present an approach to the use of sprayed surface coatings in tribological situations. Common wear types are briefly described and the philosophy behind the protective surface layer in relation to surface geometry is outlined. The performance of sprayed coatings in adhesive and abrasive wear situations is evaluated and discussed. In addition, the use of sprayed deposits for lubricated bearing surfaces is considered as well as the application of low friction coatings by the spray method.

Details

Industrial Lubrication and Tribology, vol. 25 no. 6
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 15 June 2020

L. Sulaiman, Z.H.Z. Hazrin, N.I.M. Zakir, N.A. Halim, R.A.A. Rusdi, A.S.A. Khair and H.A. Tajuddin

The effect of using microcrystalline cellulose (MCC) as an additive in coating paint films for non-stick coatings was studied in this work. This paper aims to discuss the benefits…

Abstract

Purpose

The effect of using microcrystalline cellulose (MCC) as an additive in coating paint films for non-stick coatings was studied in this work. This paper aims to discuss the benefits of MCC blended in the coating paint film that consists of poly(methyl methacrylate) (PMMA) and dammar.

Design/methodology/approach

PMMA and dammar mixed at a specific Wt.% ratio with xylene as its solvent. Two sets of mixtures were prepared, where one mixture contained MCC and another, without. The mixtures were applied to metal substrates as coating paint films. The performance of the non-stick coating paint film was observed through the adhesive test between adhesion layers on the coating paint film and also through the cross-hatch test for the adhesion of the non-stick coating paint film to the metal substrate. The results correlate with the surface roughness and glossiness tests.

Findings

The results showed that for the coating paint films, Sample B consisted of 80:20 Wt.% ratio of PMMA-dammar with an addition of 5 Wt.% MCC had an excellent performance as non-stick coating paint films. The MCC formed microparticles on the surface of the coating paint film sample and this causes the coating paint film samples with MCC to develop a rougher surface compared to the coating paint film without MCC. Sample B coating paint film had the highest average surface roughness (Ra) of 383 µm. The cross-hatch test showed the coating paint film with the addition of MCC had stronger adhesiveness on the substrate’s surface thus prevents the coating from peeling off from the surface.

Practical implications

The developed coating paint film in this study would be suitable for outdoor applications to prevent illegal advertisements and stickers.

Originality/value

MCC added to the coating paint film improves the surface performance as a non-stick coating.

Details

Pigment & Resin Technology, vol. 49 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 August 2015

Yuncai Zhao, Fei Yang and Yongming Guo

– The purpose of this paper is to investigate the effects of parallel texturing coating on antifriction mechanism of lubricating wear-resistant coating.

Abstract

Purpose

The purpose of this paper is to investigate the effects of parallel texturing coating on antifriction mechanism of lubricating wear-resistant coating.

Design/methodology/approach

A KF301/WS2 lubricating wear-resisting coating was prepared on matrix material GCr15 by applying supersonic plasma spraying technology. On the basis of this sample, the KF301/WS2 modified coating with parallel pit-type texture was prepared by laser re-melting technology and a surface texturing technique. Their friction and wear behaviors were evaluated under ambient temperature, and the antifriction mechanism of two kinds of coatings were discussed.

Findings

Results showed that parallel texture has a certain impact on the tribological properties of the coating. When friction and wear reach stable state, the value of the friction coefficient of conventional coating was 0.115, while that of parallel texturing coating was 0.09, the latter decreased by 21 per cent. When the friction and wear time was up to 4 hours, the wear loss of the conventional coating was 0.29 mg, while that of the parallel texturing coating was 0.13 mg, the latter decreased by 55 per cent.

Originality/value

The tribological properties of parallel texturing coating were higher than conventional coating. That is because the change of three-body layer reduces the friction coefficient and the abrasive particles were collected by parallel texture, reducing the effects of debris.

Details

Industrial Lubrication and Tribology, vol. 67 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 January 2024

Dexin Chen, Hongyuan He, Zhixin Kang and Wei Li

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Abstract

Purpose

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Design/methodology/approach

One-step electrodeposition is a versatile and simple technology to prepare superhydrophobic coatings on metal surfaces.

Findings

Preparing superhydrophobic coatings by one-step electrodeposition is an efficient method to protect metal surfaces.

Originality/value

Even though there are several technologies, one-step electrodeposition still plays a significant role in producing superhydrophobic coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 January 2024

Shucai Yang, Dawei Wang and Zhanjun Xiao

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical…

Abstract

Purpose

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical advantages of both and improve the overall surface properties of the material.

Design/methodology/approach

The surface hardness of the coating was measured by a microhardness tester, the surface element composition of the coating was tested by an energy spectrum analyzer and the phase was measured by an X-ray diffractometer to observe the surface morphology after the friction and wear experiment.

Findings

Laser will generate new oxide and nitride films on the surface of the coating, which will improve the hardness of the coating surface and the bonding strength between the coating and the substrate. The surface micro-texture can collect wear debris during the friction process, reduce abrasive wear and play a good role in inhibiting the expansion of the coating failure zone.

Originality/value

Most of the research on traditional laser coating is to process micro-texture first and then coating. This study is the opposite. In this paper, the modification effect of laser on the coating surface is explored, and the parameters of laser and coating are optimized, which paves the way for the subsequent milling experiments of textured coating tools.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 December 2018

A. Syafiq, A.K. Pandey, Vengadaesvaran Balakrishnan and Nasrudin Abd Rahim

The paper aims to investigate the effect of Degussa P-25 Titanium Dioxide (TiO2) nanoparticles on hydrophobicity and self-cleaning ability as a single organic coating on glass…

Abstract

Purpose

The paper aims to investigate the effect of Degussa P-25 Titanium Dioxide (TiO2) nanoparticles on hydrophobicity and self-cleaning ability as a single organic coating on glass substrate.

Design/methodology/approach

Two methods have been used to enhance the hydrophobicity on glass substrates, namely, surface modification by using low surface energy isooctyltrimethoxysilane (ITMS) solution and construction of rough surface morphology using Degussa P-25 TiO2 nanoparticles with simple bottom-up approach. The prepared sol was applied onto glass substrate using dip-coating technique and stoved in the vacuum furnace 350°C.

Findings

The ITMS coating with nano TiO2 pigment has modified the glass substrate surface by achieving the water contact angle as high as 169° ± 2° and low sliding angle of 0° with simple and low-cost operation. The solid and air phase interface has created excellent anti-dirt and self-cleaning properties against dilute ketchup solution, mud and silicon powder.

Research limitations/implications

Findings will be useful in the development of self-cleaning and anti-dirt coating for photovoltaic panels.

Practical implications

Sol method provides the suitable medium for the combination of organic–inorganic network to achieve high superhydrophobicity and optimum self-cleaning ability.

Originality/value

Application of blended organic–inorganic sol as self-cleaning and anti-dirt coating film.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 1999

Paul T. Vianco

An overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability…

1321

Abstract

An overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot‐dipped, plated, and plated‐and‐fused 100Sn and Sn‐Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all‐around best options in terms of solderability protection and wire bondability. Nickel/Pd finishes offer a slightly reduced level of performance in these areas which is most likely due to variable Pd surface conditions. It is necessary to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that include thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non‐Pb bearing solders are discussed.

Details

Circuit World, vol. 25 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 February 2009

Rambabu Arji, D.K. Dwivedi and S.R. Gupta

The paper's aim is to investigate the sand slurry erosive wear behaviour of Ni‐Cr‐Si‐B coating deposited on mild steel by flame spraying process under different test conditions.

Abstract

Purpose

The paper's aim is to investigate the sand slurry erosive wear behaviour of Ni‐Cr‐Si‐B coating deposited on mild steel by flame spraying process under different test conditions.

Design/methodology/approach

Flame sprayed coatings of Ni‐Cr‐Si‐B were developed on mild steel substrate The slurry pot tester was used to evaluate wear behaviour of the coating and mild steel. The erosive wear test was conducted using 20 and 40 per cent silica sand slurry at three rotational speeds (600, 800 and 1,000 rpm).

Findings

Slurry erosive wear of the coating showed that in case of 20 per cent silica sand slurry weight loss increases with increase in rotational speed from 600 to 1,000 rpm while in case of 40 per cent silica sand slurry weight loss first increases with increase in rotational speed from 600 to 800 rpm followed by marginal decrease in weight loss with further increase in rotational speed from 800 to 1,000 rpm. Increase in wear resistance due to thermal spray coating of Ni base alloy on mild steel was quantified as wear ratio (weight loss of mild steel and that of coating under identical erosion test conditions). Wear ratio for Ni‐Cr‐Si‐B coating was found in range of 1.4‐2.8 under different test conditions. The microstructure and microhardness study of coating has been reported and attempts have been to discuss wear behaviour in light of microstructure and microhardness. Scanning electron microscope (SEM) study of wear surface showed that loss of material from the coating surface takes place by indentation, crater formation and lip formation and its fracture.

Practical implications

It would assist in estimating the erosion wear performance of flame sprayed Ni‐Cr coatings and their affects of wear resistance.

Originality/value

Erosion wear of flame sprayed coatings in sand slurry media medium is substantiated by extensive SEM study.

Details

Industrial Lubrication and Tribology, vol. 61 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2005

B.S. Yilbas, M. Sunar, Z. Qasem, B.J. Abdul Aleem and S. Zainaulabdeen

To examine the mechanical properties of TiN PVD coated Ti‐6Al‐4V alloy through three‐point bending tests.

1387

Abstract

Purpose

To examine the mechanical properties of TiN PVD coated Ti‐6Al‐4V alloy through three‐point bending tests.

Design/methodology/approach

Ti‐6Al‐4V alloy is cut in size and polished and cleaned chemically before TiN PVD coating process. INSTRON three‐point bending equipment is used to conduct the bending tests for TiN coated and uncoated workpieces. During the tests, the load and displacement characteristics were recorded. The tests were terminated when the coating failed. Micrographs of surface and crack sites were obtained by SEM.

Findings

Coating failure occurs due to shearing effect on the tensile surface. The spalling and buckling of the coating on the compressive surface are observed. The compressive stress generated on the top surface (where the indent is in contact) did not cause adhesive failure of the coating. Moreover, cohesive cracks occur on the tensile surface of the coating. The crack ledge under the action of shear stress appears on the tensile surface of TiN coating and multi cracking of coating is resulted. The crack spacing is small indicating sliding and splitting separation between the adjacent columns in the coating.

Research limitations/implications

The tests can be extended to include the duplex treated workpieces such as the heat treatment of surface prior to TiN coating. This enhances the interface properties of the coating and base alloy.

Practical implications

The results can be used to assess the TiN coating applications in cutting tools, particularly drill bits and punches.

Originality/value

This paper provides information on mechanical behavior of TiN coating when subjected to bending force and offers practical help for the researchers and scientists working in the coating area.

Details

Industrial Lubrication and Tribology, vol. 57 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 March 2015

B. S. Yilbas, I.-H. Toor, F. Patel, Y. Al-Shehri and M. A. Baig

The purpose of this paper is to investigate the corrosion resistance of high velocity oxy-fuel (HVOF)-sprayed Diamalloy 2002 coating on carbon steel. The coating microstructure is…

Abstract

Purpose

The purpose of this paper is to investigate the corrosion resistance of high velocity oxy-fuel (HVOF)-sprayed Diamalloy 2002 coating on carbon steel. The coating microstructure is examined in line with the corrosion resistance.

Design/methodology/approach

HVOF spraying of coating is achieved, and the coating response to electrolytic solution is measured experimentally in terms of corrosion resistance.

Findings

HVOF coating improves the corrosion resistance of the substrate such that the corrosion rate of the substrate is 7.1 mpy and the coating results in 4.5 mpy. However, presence of deep pit sites at the surface suggests the occurrence of preferential corrosion around the splat boundaries. In addition, closely spaced surface texture peaks act as crevice corrosion centers at the surface while initiating the formation of deep pit sites.

Research limitations/implications

This study is limited by experimental investigations. In future, it may be extended to include model studies.

Practical implications

The findings of this study are very useful for those working in the coating industry. However, HVOF coating is limited to high temperature protection in harsh environments.

Social implications

It is useful for the power industry, particularly for gas turbines.

Originality/value

It is an original work and describes the corrosion resistance of the coating surface. It is found that the coating improved the corrosion resistance of the steel surface.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 12000