Search results

1 – 10 of over 9000
Article
Publication date: 9 February 2024

Chunxia Zhu and Xianling Meng

Micro-texture is processed on the surface to reduce the friction of the contact surface, and its application is more and more extensive. The purpose of this paper is to create a…

51

Abstract

Purpose

Micro-texture is processed on the surface to reduce the friction of the contact surface, and its application is more and more extensive. The purpose of this paper is to create a texture function model to study the influence of surface parameters on the accuracy of the simulated surface so that it can more accurately reflect the characteristics of the real micro-textured surface.

Design/methodology/approach

The microstructure function model of rough surfaces is established based on fractal geometry and polar coordinate theory. The offset angle θ is introduced into the fractal geometry function to make the surface asperity normal perpendicular to the tangent of the surface. The 2D and 3D contour surfaces of the surface groove texture are analyzed by MATLAB simulation. The effects of fractal parameters (D and G) and texture parameter h on the curvature of the surface micro-texture model were studied.

Findings

This paper more accurately characterizes the textured 3D curved surface, especially the surface curvature. The scale coefficient G significantly affects curvature, and the influence of fractal dimension D and texture parameters on curvature can be ignored.

Originality/value

The micro-texture model of the rough surface was successfully established, and the range of fractal parameters was determined. It provides a new method for the study of surface micro-texture tribology.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0298/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 March 2014

Grazielle de Oliveira Setti, Jorge Vicente Lopes da Silva, Marcelo Fernandes de Oliveira, Izaque Alves Maia, Dosil Pereira de Jesus, Raluca Savu, Thebano Emilio de Almeida Santos, Rita de Cássia Zacardi de Souza and Ednan Joanni

The purpose of this paper is to characterize polyamide parts prepared by the SLS process using techniques that are dependent on surface properties and compare the results to…

Abstract

Purpose

The purpose of this paper is to characterize polyamide parts prepared by the SLS process using techniques that are dependent on surface properties and compare the results to density measurements in order to assess which technique better reflects the degree of densification achieved using different laser power levels.

Design/methodology/approach

Fabrication of Nylon 12 (Duraform PA) samples and their characterization by apparent density measurements, perfilometry, Raman spectroscopy, scanning electron microscopy, specific surface area and contact angle measurements.

Findings

Methods dependent on surface analysis are not suitable indicators of the degree of sample densification. Among the surface methods, the results from Raman spectroscopy are the ones with the best performance. Incipient sintering of the superficial layers and raw material powder on the surface, inherent to the parts made by the SLS process, strongly interfere with the characterization.

Originality/value

Quantitative comparison of a number of surface probing methods for monitoring densification of SLS parts. Characterization of sample surfaces with and without raw material powder.

Details

Rapid Prototyping Journal, vol. 20 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 May 2007

Jirˇí Militký and Miroslav Mazal

The main aim of this paper is description of new apparatus and approach for contact less evaluation of surface roughness. For characterization of surface roughness, the procedures…

1306

Abstract

Purpose

The main aim of this paper is description of new apparatus and approach for contact less evaluation of surface roughness. For characterization of surface roughness, the procedures based on classical and non‐classical (complexity) parameters are proposed.

Design/methodology/approach

For obtaining the roughness profile in the selected direction (on the line transect of the surface), the special arrangements of textile bend around sharp edge is used. The image analysis is used for extraction of surface profile. The system of controlled movement allows one to obtain surface roughness profile in two dimensions.

Findings

By using aggregation (cut length principle), the roughness resolution is decreased and roughness profile is created without local roughness variation. After application of cut length principle, the direct combination of slices leads to the creation of roughness surface.

Research limitations/implications

There exists plenty of roughness characteristics based on standard statistics or analysis of spatial processes. For evaluation of suitability of these characteristics, it will be necessary to compare results from sets of textile surfaces.

Practical implications

The measurement of fabric roughness by an RCM device is useful as simple tool for description of roughness in individual slices and in the whole rough plane. This method replaces the traditional contact stylus profiling methods

Originality/value

The reconstruction of surface roughness from individual slices. The utilization of aggregation principle for creation of micro and macro roughness. The evaluation of roughness parameters based on the geometrical characteristics, harmonic analysis and complexity indices.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 January 2011

Mun Teng Soo, Kuan Yew Cheon and Ahmad Fauzi Mohd Noor

The purpose of this paper is to report on metal‐oxide‐semiconductor (MOS) capacitor‐based O2 sensors with different catalytic metal electrode (Al or Pd), deposited on both smooth…

Abstract

Purpose

The purpose of this paper is to report on metal‐oxide‐semiconductor (MOS) capacitor‐based O2 sensors with different catalytic metal electrode (Al or Pd), deposited on both smooth and porous surface (pore diameter ranging from 2.76 to 71.6 μm) of ZrO2 thin film.

Design/methodology/approach

The ZrO2 thin film has been prepared by RF sputtering and DC magnetron sputtering process followed by thermal oxidation process, whereas the electrodes were deposited on thin film by thermal evaporation. The sensors are exposed to O2 gas ambient at room temperature and the O2 sensing performance has been examined by surface characterizations and on‐line sensing electrical characterizations.

Findings

MOS capacitor O2 sensor with Pd electrode on porous ZrO2 thin film has the best sensitivity in term of both adsorption and desorption of gas. This sensor is proved to be operated in both capacitor and diode modes.

Originality/value

The paper demonstrates that room temperature MOS‐based O2 sensor operates in capacitor and diode mode conditions with focus on the effect of ZrO2 surface morphology on the sensing properties.

Details

Microelectronics International, vol. 28 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 February 2018

Younes El Kacimi, Mouhsine Galai, Khaoula Alaoui, Rachid Touir and Mohamed Ebn Touhami

The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in…

Abstract

Purpose

The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in steels/cetyltrimethylammonium bromide combined and KI (mixture)/5.0 M hydrochloric acid systems has been studied in relation to the temperature using chemical (weight loss), Tafel polarization, electrochemical impedance spectroscopy (EIS), scanning electronic microscope (SEM) analysis and Optical 3D profilometry characterization. All the methods used are in reasonable agreement. The kinetic and thermodynamic parameters for each steels corrosion and inhibitor adsorption, respectively, were determined and discussed. Results show that the adsorption capacity for Steel Classes A and B are better than Steel Class C surfaces depending on their silicon and phosphorus content. Surface analyses via SEM and Optical 3D profilometry was used to investigate the morphology of the steels before and after immersion in 5.0 M HCl solution containing mixture. Surface analysis revealed improvement of corrosion resistance of Steels Classes A and B in the presence of mixture more than Classes C. It has been determined that the adsorbed protective film on the steels surface heterogeneity markedly depends on steels compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.

Design/methodology/approach

The effect of silicon and phosphorus content in Steels Classes A, B and C on its corrosion and inhibitor mixture adsorption processes in 5.0 M HCl solution has been studied by weight loss, potentiodynamic polarization, EIS and surface analysis.

Findings

The inhibition efficiency of mixture follows the order: (Steel Class A) > (Steel Class B) > Steel Class C) and depends on their compositions in the absence of mixture according on their silicon and phosphorus content, that is, the corrosion rate increases with increasing of the silicon and phosphorus content. A potentiodynamic polarization measurement indicates that the mixture acts as mixed-type inhibitor without changing the mechanism of corrosion process for the three classes of mild steels.

Originality/value

Corrosion rate mild steels in 5.0 M HCl depends on their compositions in the absence of mixture according to their silicon and phosphorus content, that is, the corrosion rate increases with increasing silicon and phosphorus content. The adsorbed protective film on the steels surface heterogeneity markedly depends on steels class’s compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 November 2009

Teija Laine‐Ma, Pekka Ruuskanen, Satu Kortet and Mikko Karttunen

The adhesion between electroless copper and a substrate is one of the most important factors in the reliability of thermoplastic printed circuit boards. The purpose of this paper…

1408

Abstract

Purpose

The adhesion between electroless copper and a substrate is one of the most important factors in the reliability of thermoplastic printed circuit boards. The purpose of this paper is to investigate the effects of mechanical grinding and acid etching of thermoplastic substrate materials on the adhesion of copper deposited by an electroless copper plating process. The base material of the test substrates was a new high temperature thermoplastic polyphenylene oxide (PPO) compound.

Design/methodology/approach

The effects of pre‐treatment on plastic surfaces are analyzed by the following methods: Fourier transform infrared (FTIR), SEM, the Dyne surface energy test and the surface roughness test. The adhesion between electroless copper and thermoplastic substrate is measured with a peel strength test.

Findings

The results showed that mechanical grinding of the substrates significantly increased adhesion but the highest adhesion is gained by using an acid etch treatment before electroless plating. These results indicated that adhesion between copper and the substrates was not directly proportional to the roughness and surface energy values.

Originality/value

The conventional sweller/desmear treatment used in a printed circuit board factory for pre‐treating epoxy based laminates prior to electroless plating is not suitable for these PPO compound boards. The copper adhesion is adequate when the substrates are etched with sulphuric acid/chromate solution. In that case the bonding between the metal layer and the plastic surface is stronger than the bondings between the polymer chains of the thermoplastic material. The adhesion mechanism of electroless copper in these mechanically abraded samples is mechanical interlocking of metal particles.

Details

Circuit World, vol. 35 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 8 May 2018

Rajeev Kumar, Sanjeev Bhandari, Atul Goyal and Yogesh Kumar Singla

This paper aims to cover all the aspects of development, investigation and analysis phases to evaluate the slurry erosion performance of test coatings. The powders having…

Abstract

Purpose

This paper aims to cover all the aspects of development, investigation and analysis phases to evaluate the slurry erosion performance of test coatings. The powders having composition of Ni-20Al2O3 and Ni-15Al2O3-5TiO2 were deposited on CA6NM grade turbine steel by using high velocity flame spray (HVFS) technique. The characterization of the coatings was done with the help of SEM/EDS and XRD techniques. Various properties such as micro-hardness and bonding strength of the coatings were also evaluated. Thereafter, these coatings were subjected to an indigenously developed high speed slurry erosion tester at different levels of rotational speed, erodent particle size and slurry concentration. The effect of these parameters on the erosion behavior of coatings was also evaluated. The slurry erosion tests and SEM of the eroded surfaces revealed remarkable improvement in slurry erosion resistance of Ni-15Al2O3-5TiO2 coating in comparison with Ni-20Al2O3 coating.

Design/methodology/approach

Two different compositions of HVFS coating were developed onto CA6NM steel. Subsequently, these coatings were evaluated by means of mechanical and microstructural characterization. Further, slurry erosion testing was done to analyze the erosive wear behavior of developed coatings.

Findings

The coatings were successfully developed by HVFS process. Cross-sectional microscopic analysis of sprayed coatings revealed a continuous and defect-free contact between substrate and coating. Ni-15Al2O3-5TiO2 coating showed higher value of bond strength in comparison with Ni-20Al2O3 coating. Under all the testing conditions, Ni-15Al2O3-5TiO2 coatings showed higher resistance to slurry erosion in comparison with Ni-20Al2O3 coatings. Rotational speed, average particle size of erodent and slurry concentration were found to have proportional effect on specific mass loss of coatings. The mixed behavior (brittle as well as ductile) of the material removal mechanism was observed for the coatings.

Originality/value

From the literature review, it was found that researchers have documented the various studies on Ni-Al2O3, Ni-TiO2 and Al2O3-TiO2 coatings. No one has ascertained the synergetic effect of Alumina and Titania on the slurry erosion performance of Nickel-based coating. In view of this, the authors have developed Ni-Al2O3 and Ni-Al2O3-TiO2 coatings, and an attempt has been made to compare their mechanical, microstructural and slurry erosion characteristics.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 November 2017

A.U. Chaudhry, Vikas Mittal, M.I. Hashmi and Brajendra Mishra

Inorganic oxide addition can be synergistically beneficial in organic coatings if it can impart anti-corrosion properties and also act as an additive to enhance physical and/or…

Abstract

Purpose

Inorganic oxide addition can be synergistically beneficial in organic coatings if it can impart anti-corrosion properties and also act as an additive to enhance physical and/or chemical properties. The aim of this study was to evaluate the anti-corrosion benefits of nano nickel zinc ferrite (NZF) in the polymer film.

Design/methodology/approach

The time-dependent anti-corrosion ability of NZF (0.12-1.0 per cent w/w NZF/binder), applied on API 5L X-80 carbon steel, was characterized by electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, linear polarization resistance and potentiodynamic. Characterization of corrosion layer was done by removing coatings after 216 h of immersion in 3.5 per cent w/v NaCl. Optical microscopy, field emission scanning electron microscopy and X-ray diffraction techniques were used to characterize the corroded surface.

Findings

Corrosion measurements confirm the electrochemical activity by metallic cations on the steel surface during corrosion process which results in improvement of anti-corrosion properties of steel. Moreover, surface techniques show compact corrosion layer coatings and presence of different metallic oxide phases for nanocomposite coatings.

Originality/value

The suggested protection mechanism was explained by the leaching and precipitation of metallic ion on the corroded surface which in turn slowed down the corrosion activity. Furthermore, improvement in barrier properties of rubber-based coatings was confirmed by the enhanced pore resistance. This work indicates that along with a wide range of applications of NZF, anti-corrosion properties can be taken as an addition.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 September 2018

Ayşe Nur Acar, Rasiha Nefise Mutlu, Abdul Kadir Ekşi, Ahmet Ekicibil and Birgül Yazıcı

The purpose of this paper is to examine new alloys created from Alumix 431 powder and investigate their mechanical and electrochemical properties.

Abstract

Purpose

The purpose of this paper is to examine new alloys created from Alumix 431 powder and investigate their mechanical and electrochemical properties.

Design/methodology/approach

In this study; Alumix-431 alloy samples were prepared using the powder metallurgy (P/M) method applying cold (RT) and warm (50°C and 80°C) compaction methods under pressures of 200 and 250 MPa and were sintered at 600°C in N2(g) atmosphere. Hardness and density of the samples were measured, and corrosion properties were determined by electrochemical impedance spectroscopy charting polarization curves. Surface characterization was determined by contact angle, scanning electron microscopy/mapping, energy dispersive X-ray spectrometry and X-ray diffractometry images.

Findings

Alumix-431 alloys obtained upon compaction at 250 MPa/50 °C had the highest mechanical properties and corrosion resistance and good surface properties. On the surfaces of Alumix-431 alloys, α-Al, MgZn2, Al2,CuMg, Al2,O3, Al2MgO4 phases were recorded.

Originality/value

This study aimed to construct a correlation between mechanical and electrochemical properties of the newly created alloys (prepared under special conditions).

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 1973

Shell Research Laboratories

A relatively new concept which is now playing a major role in the studies of organic surfaces is the characterisation of such surfaces by the measurement of critical surface

Abstract

A relatively new concept which is now playing a major role in the studies of organic surfaces is the characterisation of such surfaces by the measurement of critical surface tension, γc. The value of this property allows certain predictions to be made as to whether or not a given liquid will wet and spread on a particular solid surface.

Details

Pigment & Resin Technology, vol. 2 no. 1
Type: Research Article
ISSN: 0369-9420

1 – 10 of over 9000