Search results

1 – 10 of 27
Article
Publication date: 5 September 2023

Chao Zhang, Jianxin Fu and Yu Wang

The interaction between rock mass structural planes and dynamic stress levels is important to determine the stability of rock mass structures in underground geotechnical…

Abstract

Purpose

The interaction between rock mass structural planes and dynamic stress levels is important to determine the stability of rock mass structures in underground geotechnical engineering. In this work, the authors aim to focus on the degradation effects of fracture geometric parameters and unloading stress paths on rock mechanical properties.

Design/methodology/approach

A three-dimensional Particle Flow Code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of granite specimens containing prefabricated cracks under conventional triaxial compression and triaxial unilateral unloading. The authors demonstrated the unique mechanical response of prefabricated fractured rock under two conditions. The crack initiation, propagation, and coalescence process of pre-fissured specimens were analyzed in detail.

Findings

The authors show that the prefabricated cracks and unilateral unloading conditions not only deteriorate the mechanical strength but also have significant differences in failure modes. The degrading effect of cracks on model strength increases linearly with the decrease of the dip angle. Under the condition of true triaxial unilateral unloading, the deterioration effect of peak strength of rock is very significant, and unloading plays a role in promoting the instability failure of rock after peak, making the rock earlier instability failure. Associating with the particle vector diagram and crack coalescence process, the authors find that model failure mode under unilateral loading conditions is obviously distinct from that in triaxial loading. The peak strain in the unloading direction increases sharply, resulting in a new shear slip.

Originality/value

This study is expected to improve the understanding of the strength failure and cracking behavior of fractured rock under unilateral unloading.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2024

Chun Qiang Jia, Aofei Wang, Ling Yu and Li Zong

The rock drill’s drill tail experiences high-frequency fretting simultaneously in the rotational and axial directions. Due to the complex working characteristics and the low…

Abstract

Purpose

The rock drill’s drill tail experiences high-frequency fretting simultaneously in the rotational and axial directions. Due to the complex working characteristics and the low viscosity of the water medium, the pure water seal is susceptible to damage and failure. The purpose of this paper is to enhance the water seal’s performance.

Design/methodology/approach

The Y-shaped seal ring is modeled and simulated using orthogonal testing. Through analysis of the impact of various seal section parameters on sealing performance, the maximum contact stress and maximum Von Mises stress are selected as indicators of sealing effectiveness.

Findings

The maximum contact stress is proportional to lip thickness and chamfer length but inversely proportional to lip length. Meanwhile, the maximum Von Mises stress is directly influenced by lip depth and the included angle of the lip and drill tail but is inversely proportional to the lip thickness. The enhanced Y-shaped water seal sees reductions of 15% and 45% in maximum contact stress and maximum Von Mises stress, respectively.

Originality/value

This paper used analytical method and model that is helpful for design of the water seal’s structure in complex working characteristics and the low viscosity of the water medium.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0366/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 October 2023

Chen-Xi Han, Tian-Shun Hou and Ye Chen

To solve the instability problem of Zhangjiayao landslide caused by rainfall, the internal mechanism of slope instability and the supporting effect of anti-slide piles are…

Abstract

Purpose

To solve the instability problem of Zhangjiayao landslide caused by rainfall, the internal mechanism of slope instability and the supporting effect of anti-slide piles are studied. The research results can provide theoretical basis for the prevention and control of loess landslides.

Design/methodology/approach

A three-dimensional finite element model of Zhangjiayao landslide is established by field geological survey, laboratory test and numerical simulation.

Findings

The results show that Zhangjiayao landslide is a loess-mudstone contact surface landslide, and rainfall leads to slope instability and traction landslide. The greater the rainfall intensity, the faster the pore water pressure of the slope increases and the faster the matrix suction decreases. The longer the rainfall duration, the greater the pore water pressure of the slope and the smaller the matrix suction. Anti-slide pile treatment can significantly improve slope stability. The slope safety factor increases with the increase of embedded depth of anti-slide pile and decreases with the increase of pile spacing.

Originality/value

Based on the unsaturated soil seepage theory and finite element strength reduction method, the failure mechanism of Zhangjiayao landslide was revealed, and the anti-slide pile structure was optimized and designed based on the pile-soil interaction principle. The research results can provide theoretical basis for the treatment of loess landslides.

Highlights

  1. A three-dimensional finite element model of Zhangjiayao landslide is established.

  2. Zhangjiayao landslide is a loess-mudstone contact surface landslide.

  3. The toe of Zhangjiayao slope is first damaged by heavy rainfall, resulting in traction landslide.

  4. The deformation of Zhangjiayao slope is highly dependent on rainfall intensity and duration.

  5. The anti-slide pile can effectively control the continuous sliding of Zhangjiayao slope.

A three-dimensional finite element model of Zhangjiayao landslide is established.

Zhangjiayao landslide is a loess-mudstone contact surface landslide.

The toe of Zhangjiayao slope is first damaged by heavy rainfall, resulting in traction landslide.

The deformation of Zhangjiayao slope is highly dependent on rainfall intensity and duration.

The anti-slide pile can effectively control the continuous sliding of Zhangjiayao slope.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 December 2023

Muzamil Ahmad Rafiqii, M.A. Lone and M.A. Tantray

This study aims to provide a review for scour in complex rivers and streams with coarser bed material, steep longitudinal bed slopes and dynamic environments, in the interest of…

Abstract

Purpose

This study aims to provide a review for scour in complex rivers and streams with coarser bed material, steep longitudinal bed slopes and dynamic environments, in the interest of the safety and the economy of hydraulic structures. The knowledge of scour in such geographical complexities is very crucial for a comprehensive understanding of scour failures and for establishing definitive criteria to bridge this major research gap.

Design/methodology/approach

The existing available literature shows significant work done in case of silt, sand and small sized coarser bed material but any substantial work for bed material of gravel size or above is lacking, resulting in a wide gap. Though some researchers have attempted to explore possibilities of refining the existing models by adding pier size, shape, sediment non-uniformity and armouring effects, which otherwise have been given a miss by the various researchers, including the pioneer in the field Lacey–Inglis (1930). But still, a rational model for scour estimation in such complex conditions for global use is yet to come. This is because all the parameters governing the scour have not been studied properly till date as is evident from the globally available literature and is witnessed in the field too, in recurrent failure of hydraulic structures especially bridges.

Findings

The researchers presume that the finer materials move only as a result of erosion. However, in actual field conditions, it has been observed that the large-sized stones also roll down and cause huge erosion along the river bed and damage the hydraulic structures, especially in the steep river/stream beds along hilly slopes. This fact has been overlooked in the models available globally and has been highlighted only in the current work in an attempt to recognize this major research gap. A study carried out on a number of streams globally and in Jammu and Kashmir, India also, has shown that in steep river and stream beds with bed material consisting of gravel size or greater than gravel, large scour holes ranging from 1 m to 5 m were created by furious floods, and due to other unknown forces along the channel path and near foundations of hydraulic structures.

Originality/value

To the best of the authors’ knowledge, this work is purely original.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 2 February 2023

Chiara Bertolin and Elena Sesana

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs…

1183

Abstract

Purpose

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs) among the existing 28 churches at high spatial resolution to better understand, reduce and mitigate single- and multi-risk. In addition, the present contribution aims to provide decision makers with some information to face the exacerbation of the risk caused by the expected climate change.

Design/methodology/approach

Material and data collection started with the consultation of the available literature related to: (1) SCs' conservation status, (2) available methodologies suitable in multi-hazard approach and (3) vulnerability leading indicators to consider when dealing with the impact of natural hazards specifically on immovable cultural heritage.

Findings

The paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. The results highlight the danger at which the SCs of Røldal, in case of floods, and of Ringebu, Torpo and Øye, in case of landslide, may face and stress the urgency of increasing awareness and preparedness on these potential hazards.

Originality/value

The contribution for the first time aims to homogeneously collect and report all together existing spread information on architectural features, conservation status and geographical attributes for the whole group of SCs by accompanying this information with as much as possible complete 2D sections collection from existing drawings and novel 3D drawn sketches created for this contribution. Then the paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. Then it highlights the danger of floods and landslides at which the 28 SCs are subjected. Finally it reports how these risks will change under the ongoing impact of climate change.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 9 April 2024

Selma Bahi and Mohamed Nabil Houhou

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased…

Abstract

Purpose

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased stone columns (OSC and GESC). The effectiveness of the geosynthetic encasement and the impact of the installation using the lateral expansion method on the column performance is evaluated through a three-dimensional (3D) unit cell numerical analysis.

Design/methodology/approach

A full 3D numerical analysis is carried out using the explicit finite element code PLAXIS 3D to examine the installation influence on settlement reduction (ß), lateral displacement (Ux) and vertical displacement (Uz) relative to different values of lateral expansion of the column (0% to 15%).

Findings

The findings demonstrate the superior performance of GESC, particularly short columns outperforming floating counterparts. This enhanced performance is attributed to the combined effects of geosynthetic encasement and increased lateral expansion. Notably, these strategies contribute significantly to decreasing lateral displacement (Ux) at the column’s edge and reducing vertical displacement (Uz) under the rigid footing.

Originality/value

In contrast to previous studies that examined the installation effect of OSC contexts, this paper presents a comprehensive investigation into the effect of geosynthetic encasement and the installation effects using the lateral expansion method in very soft soil, using 3D numerical simulation. The study emphasizes the significance of the consideration of geosynthetic encasement and lateral expansion of the column during the design process to enhance column performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2022

Mohamed Nabil Houhou, Tamir Amari and Abderahim Belounar

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on…

134

Abstract

Purpose

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on the additional single pile responses in terms of bending moment, lateral deflection, axial force, shaft resistance and pile settlement. Subsequently, a series of parametric studies were carried out to better understand the responses of single piles induced by tunneling. To give further understanding regarding the pile groups, a 2 × 2 pile group with two different pile head conditions, namely, free and capped, was considered.

Design/methodology/approach

Using the PLAXIS three-dimensional (3D) software, a full 3D numerical modeling is performed to investigate the effects of ground movements caused by tunneling on adjacent pile foundations. The numerical model was validated using centrifuge test data found in the literature. The relevance of the 3D model is also judged by comparison with the 2D plane strain model using the PLAXIS 2D code.

Findings

The numerical test results reveal that tunneling induces significant displacements and internal forces in nearby piles. The magnitude and distribution of internal forces depend mainly on the position of the pile toe relative to the tunnel depth and the distance between the pile and the vertical axis of the tunnel. As the volume loss increases from 1% to 3%, the apparent loss of pile capacity increases from 11% to 20%. By increasing the pile length from 0.5 to 1.5 times, the tunnel depth, the maximum pile settlement and lateral deflection decrease by about 63% and 18%, respectively. On the other hand, the maximum bending moment and axial load increase by about 7 and 13 times, respectively. When the pile is located at a distance of 2.5 times the tunnel diameter (Dt), the additional pile responses become insignificant. It was found that an increase in tunnel depth from 1.5Dt to 2.5Dt (with a pile length of 3Dt) increases the maximum lateral deflection by about 420%. Regarding the interaction between tunneling and group of piles, a positive group effect was observed with a significant reduction of the internal forces in rear piles. The maximum bending moment of the front piles was found to be higher than that of the rear piles by about 47%.

Originality/value

Soil is a complex material that shows differently in primary loading, unloading and reloading with stress-dependent stiffness. This general behavior was not possibly being accounted for in simple elastic perfectly plastic Mohr–Coulomb model which is often used to predict the behavior of soils. Thus, in the present study, the more advanced hardening soil model with small-strain stiffness (HSsmall) is used to model the non-linear stress–strain soil behavior. Moreover, unlike previous studies THAT are usually based on the assumption that the soil is homogeneous and using numerical methods by decoupled loadings under plane strain conditions; in this study, the pile responses have been exhaustively investigated in a two-layered soil system using a fully coupled 3D numerical analysis that takes into account the real interactions between tunneling and pile foundations. The paper presents a distinctive set of findings and insights that provide valuable guidance for the design and construction of shield tunnels passing through pile foundations.

Article
Publication date: 17 November 2023

Hong-tao Zhang, Shan Liu, Lan-xi Sun and Yu-fei Zhao

There have been limited investigations on the mechanical characteristics of tunnels supported by corrugated plate structures during fault dislocation. The authors obtained…

Abstract

Purpose

There have been limited investigations on the mechanical characteristics of tunnels supported by corrugated plate structures during fault dislocation. The authors obtained circumferential and axial deformations of the spiral corrugated pipe at various fault displacements. Lastly, the authors examined the impact of reinforced spiral stiffness and soil constraints on the support performance of corrugated plate tunnels under fault displacement.

Design/methodology/approach

By employing the theory of similarity ratios, the authors conducted model tests on spiral corrugated plate support using loose sand and PVC (polyvinyl chloride) spiral corrugated PE pipes for cross-fault tunnels. Subsequently, the soil spring coefficient for tunnel–soil interaction was determined in accordance with ASCE (American Society of Civil Engineers) specifications. Numerical simulations were performed on spiral corrugated pipes with fault dislocation, and the results were compared with the experimental data, enabling the determination of the variation pattern of the soil spring coefficient.

Findings

The findings indicate that the maximum axial tensile and compressive strains occur on both sides of the fault. As the reinforced spiral stiffness reaches a certain threshold, the deformation of the corrugated plate tunnel and the maximum fault displacement stabilize. Furthermore, a stronger soil constraint leads to a lower maximum fault displacement that the tunnel can withstand.

Research limitations/implications

In this study, the calculation formula for density similarity ratio cannot be taken into account due to the limitations of the helical corrugated tube process and the focus on the deformation pattern of helical corrugated tubes under fault action.

Originality/value

This study provides a basis for the mechanical properties of helical corrugated tube tunnels under fault misalignment and offers optimization solutions.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 November 2023

Vaishnavi Pandey, Anirbid Sircar, Kriti Yadav and Namrata Bist

This paper aims to conduct a detailed analysis of the industrial practices currently being used in the geothermal energy industry and to determine whether they are contributing to…

Abstract

Purpose

This paper aims to conduct a detailed analysis of the industrial practices currently being used in the geothermal energy industry and to determine whether they are contributing to any limitations. A HAZOP-based upgradation model for improvement in existing industrial practices is proposed to ensure the removal of inefficient conventional practices. The HAZOP-based upgradation model examines the setbacks, identifies its causes and consequences and suggests improvement methods comprising of modern-day technology.

Design/methodology/approach

This paper proposed a HAZOP-based upgradation model for improvement in existing industrial practices. The proposed HAZOP model identifies the drawbacks brought on by conventional practices and suggests improvements.

Findings

The study reviewed the challenges geothermal power plants currently face due to conventional practices and suggested a total of 22 upgradation recommendations. From those, a total of 11 upgradation modules comprising modern digital technology and Industry 4.0 elements were proposed to improve the existing practices in the geothermal energy industry. Autonomous robots, augmented reality, machine learning and Internet of Things were identified as useful methods for the upgradation of the existing geothermal energy system.

Research limitations/implications

If proposed recommendations are incorporated, the efficiency of geothermal energy generation will increase as cumulating setbacks will no longer degrade the work output.

Practical implications

The proposed recommendation by the study will make way for Industry 4.0 integration with the geothermal energy sector.

Originality/value

The paper uses a proposed HAZOP-based upgradation model to review issues in existing industrial practices of the geothermal energy sector and recommends solutions to overcome operability issues using Industry 4.0 technologies.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 10 of 27