Search results

1 – 10 of 857
Article
Publication date: 7 June 2023

Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Rama S.R. Gorla and Ali J. Chamkha

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in…

Abstract

Purpose

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in novel umbrella-shaped porous thermal systems. The system is top-cooled, and the identical heater surfaces are provided centrally at the bottom to identify the most enhanced configuration.

Design/methodology/approach

The thermal-fluid flow analysis is performed using a finite volume-based indigenous code, solving the nonlinear coupled transport equations with the Darcy number (10–5 ≤ Da ≤ 10–1), modified Rayleigh number (10 ≤ Ram ≤ 104) and Hartmann number (0 ≤ Ha ≤ 70) as the dimensionless operating parameters. The semi-implicit method for pressure linked equations algorithm is used to solve the discretized transport equations over staggered nonuniform meshes.

Findings

The study demonstrates that altering the heater surface geometry improves heat transfer by up to 224% compared with a flat surface configuration. The triangular-shaped heating surface is the most effective in enhancing both heat transfer and flow strength. In general, flow strength and heat transfer increase with rising Ram and decrease with increasing Da and Ha. The study also proposes a mathematical correlation to predict thermal characteristics by integrating all geometric and flow control variables.

Research limitations/implications

The present concept can be extended to further explore thermal performance with different curvature effects, orientations, boundary conditions, etc., numerically or experimentally.

Practical implications

The present geometry configurations can be applied in various engineering applications such as heat exchangers, crystallization, micro-electronic devices, energy storage systems, mixing processes, food processing and different biomedical systems (blood flow control, cancer treatment, medical equipment, targeted drug delivery, etc.).

Originality/value

This investigation contributes by exploring the effect of various geometric shapes of the heated bottom on the hydromagnetic convection of Cu–Al2O3–H2O hybrid nanofluid flow in a complex umbrella-shaped porous thermal system involving curved surfaces and multiphysical conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 31 January 2023

Christian Orgeldinger, Tobias Rosnitscheck and Stephan Tremmel

Microtextured surfaces can reduce friction in tribological systems under certain contact conditions. Because it is very time-consuming to determine suitable texture patterns…

Abstract

Purpose

Microtextured surfaces can reduce friction in tribological systems under certain contact conditions. Because it is very time-consuming to determine suitable texture patterns experimentally, numerical approaches to the design of microtextures are increasingly gaining acceptance. The purpose of this paper is to investigate to what extent the selected modeling approach affects optimized texturing.

Design/methodology/approach

Using the cam/tappet contact as an application-oriented example, a simplified 2D and a full 3D model are developed for determining the best possible texturing via a design study. The study explores elongated Gaussian-shaped texture elements for this purpose. The optima of the simplified 2D simulation model and the full 3D model are compared with each other to draw conclusions about the influence of the modeling strategy. The target value here is the solid body friction in contact.

Findings

For the elongated texture elements used, both the simplified 2D model and the full model result in very similar optimal texture patterns. In the selected application, the simplified simulation model can significantly reduce the computational effort without affecting the optimization result.

Originality/value

Depending on the selected use case, the simulation effort required for microtexture optimization can be significantly reduced by comparing different models first. Therefore, an exact physical replica of the real contact is not necessarily the primary goal when it comes to texture selection based on numerical simulations.

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 June 2023

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho, Vicente Luiz Scalon and Santiago del Rio Oliveira

The purpose of this study is to numerically and experimentally investigate the natural convection heat transfer in flat plates and plates with square, trapezoidal and triangular…

Abstract

Purpose

The purpose of this study is to numerically and experimentally investigate the natural convection heat transfer in flat plates and plates with square, trapezoidal and triangular corrugations.

Design/methodology/approach

This work is an extension of the previous studies by Verderio et al. (2021a, 2021b, 2021c, 2021d, 2022a). An experimental apparatus was built to measure the plates’ temperatures during the natural convection cooling process. Several physical parameters were evaluated through the experimental methodology. Free and open-source computational tools were used to simulate the experimental conditions and to quantitatively and qualitatively evaluate the thermal plume characteristics over the plates.

Findings

The numerical results were experimentally validated with reasonable accuracy in the range of studied RaLP for the different plates. Empirical correlations of Nu¯LPexp=f(RaLP), h¯conv=f(RaLP) and Nu¯LPexp(A/AP)=f(RaLP), with good accuracy and statistical representativeness, were obtained for the studied geometries. The convective thermal efficiency of corrugated plates (Δη), as a function of RaLP, was also experimentally studied quantitatively. In agreement with the findings of Oosthuizen and Garrett (2001), the experimental and numerical results proved that the increase in the heat exchange area of the corrugations has a greater influence on the convective exchange and the thermal efficiency than the disturbances caused in the flow (which reduce h¯conv). The plate with trapezoidal corrugations presented the highest convective thermal efficiency, followed by the plates with square and triangular corrugations. It was also proved that the thermal efficiency of corrugated plates increases with RaLP.

Practical implications

The results demonstrate that corrugated surfaces have greater thermal efficiency than flat plates in heating and/or cooling systems by natural convection. This way, corrugated plates can reduce the dependence on auxiliary forced convection systems, with application in technological areas and Industry 4.0.

Originality/value

The empirical correlations obtained for the corrected Nusselt number and thermal efficiency for the corrugated plate geometries studied are original and unpublished, as well as the experimental validation of the developed three-dimensional numerical code.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Light emitting diode (LED) has been the best resource for commercial and industrial lighting applications. However, thermal management in high power LEDs is a major challenge in…

Abstract

Purpose

Light emitting diode (LED) has been the best resource for commercial and industrial lighting applications. However, thermal management in high power LEDs is a major challenge in which the thermal resistance (Rth) and rise in junction temperature (TJ) are critical parameters. The purpose of this work is to evaluate the Rth and Tj of the LED attached with the modified heat transfer area of the heatsink to improve thermal management.

Design/methodology/approach

This paper deals with the design of metal substrate for heatsink applications where the surface area of the heatsink is modified. Numerical simulation on heat distribution proved the influence of the design aspects and surface area of heatsink.

Findings

TJ was low for outward step design when compared to flat heatsink design (ΔT ∼ 38°C) because of increase in surface area from 1,550 mm2 (flat) to 3,076 mm2 (outward step). On comparison with inward step geometry, the TJ value was low for outward step configuration (ΔTJ ∼ 6.6°C), which is because of efficient heat transfer mechanism with outward step design. The observed results showed that outward step design performs well for LED testing by reducing both Rth and TJ for different driving currents.

Originality/value

This work is authors’ own design and also has the originality for the targeted application. To the best of the authors’ knowledge, the proposed design has not been tried before in the electronic or LED applications.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 28 February 2024

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho and Vicente Luiz Scalon

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on…

Abstract

Purpose

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on the flow and the natural convection heat transfer process over isothermal plates.

Design/methodology/approach

This work is an extension and finalization of previous studies of the leading author. The numerical methodology was proposed and experimentally validated in previous studies. Using OpenFOAM® and other free and open-source numerical-computational tools, three-dimensional numerical models were built to simulate the flow and the natural convection heat transfer process over isothermal corrugation plates with variable and constant heights.

Findings

The influence of different geometric arrangements of corrugated plates on the flow and natural convection heat transfer over isothermal plates is investigated. The influence of the height ratio parameter, as well as the resulting concave and convex profiles, on the parameters average Nusselt number, corrected average Nusselt number and convective thermal efficiency gain, is analyzed. It is shown that the total convective heat transfer and the convective thermal efficiency gain increase with the increase of the height ratio. The numerical results confirm previous findings about the predominant effects on the predominant impact of increasing the heat transfer area on the thermal efficiency gain in corrugated surfaces, in contrast to the adverse effects caused on the flow. In corrugations with heights resulting in concave profiles, the geometry with triangular corrugations presented the highest total convection heat transfer, followed by trapezoidal and rectangular. For arrangements with the same area, it was demonstrated that corrugations of constant and variable height are approximately equivalent in terms of natural convection heat transfer.

Practical implications

The results allowed a better understanding of the flow characteristics and the natural convection heat transfer process over isothermal plates with corrugations of variable height. The advantages of the surfaces studied in terms of increasing convective thermal efficiency were demonstrated, with the potential to be used in cooling systems exclusively by natural convection (or with reduced dependence on forced convection cooling systems), including in technological applications of microelectronics, robotics, internet of things (IoT), artificial intelligence, information technology, industry 4.0, etc.

Originality/value

To the best of the authors’ knowledge, the results presented are new in the scientific literature. Unlike previous studies conducted by the leading author, this analysis specifically analyzed the natural convection phenomenon over plates with variable-height corrugations. The obtained results will contribute to projects to improve and optimize natural convection cooling systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry…

Abstract

Purpose

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry, interlayer load-bearing bonded area and fibre orientation for fibre-reinforced composites. However, this study aims to understand the effects of extrusion width on 3D printed composites, which has never been studied systematically.

Design/methodology/approach

Four polymers with and without short-fibre reinforcement were 3D printed into single-filament-wide specimens. Tensile properties, mechanical anisotropy and fracture mechanisms were evaluated along the direction of extruded filaments (F) and normal to the interlayer bond (Z). Extrusion width, nozzle temperature and layer height were studied separately via single-variable control. The extrusion width was controlled by adjusting polymer flow in the manufacturing procedure (gcode), where optimisation can be achieved with software/structure design as opposed to hardware.

Findings

Increasing extrusion width caused a transition from brittle to ductile fracture, and greatly reduced directional anisotropy for strength and ductility. For all short fibre composites, increasing width led to an increase in strain-at-break and decreased strength and stiffness in the F direction. In the Z direction, increasing width led to increased strength and strain-at-break, and stiffness decreased for less ductile materials but increased for more ductile materials.

Originality/value

The transformable fracture reveals the important role of extrusion width in processing-structure-property correlation. This study reveals a new direction for future research and industrial practice in controlling anisotropy in additive manufacturing. Increasing extrusion width may be the simplest way to reduce anisotropy while improving printing time and quality in additive manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 April 2023

Wanderson Ferreira dos Santos, Ayrton Ribeiro Ferreira and Sergio Persival Baroncini Proença

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media…

Abstract

Purpose

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media. The effects of cell morphology and imposed boundary conditions are assessed. The sensitivity of the yield surfaces to the Lode angle is also investigated in detail.

Design/methodology/approach

The microscale of the material is modelled by the concept of Representative Volume Element (RVE) or unit cell, which is numerically simulated through three-dimensional finite element analyses. Numerous loading conditions are considered to create complete yield surfaces encompassing high, intermediate and low triaxialities. The influence of cell morphology on the yield surfaces is assessed considering a spherical cell with spherical void and a cubic RVE with spherical void, both under uniform strain boundary condition. The use of spherical cell is interesting as preferential directions in the effective behaviour are avoided. The periodic boundary condition, which favours strain localization, is imposed on the cubic RVE to compare the results. Small strains are assumed and the cell matrix is considered as a perfect elasto-plastic material following the von Mises yield criterion.

Findings

Different morphologies for the cell imply in different yield conditions for the same load situations. The yield surfaces in correspondence to periodic boundary condition show significant differences compared to those obtained by imposing uniform strain boundary condition. The stress Lode angle has a strong influence on the geometry of the yield surfaces considering low and intermediate triaxialities.

Originality/value

The exhaustive computational study of the effects of cell morphologies and imposed boundary conditions fills a gap in the full representation of the flow surfaces. The homogenisation-based strategy allows us to further investigate the influence of the Lode angle on the yield surfaces.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 July 2023

Ulrich Gabbert, Stefan Ringwelski, Mathias Würkner and Mario Kittsteiner

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as…

Abstract

Purpose

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as the life span of structures, especially if they are subjected to high static and dynamic loads. Such defects should be considered during the design process or after production, where the defects could be detected with the help of computed tomography (CT) measurements. However, this is usually not done in today's mass production environments. This paper deals with the stress analysis of die-cast structural parts with pores found from CT measurements or that are artificially placed within a structure.

Design/methodology/approach

In this paper the authors illustrate two general methodologies to take into account the porosity of die-cast components in the stress analysis. The detailed geometry of a die-cast part including all discontinuities such as pores and shrink holes can be included via STL data provided by CT measurements. The first approach is a combination of the finite element method (FEM) and the finite cell method (FCM), which extends the FEM if the real geometry cuts finite elements. The FCM is only applied in regions with pores. This procedure has the advantage that all simulations with different pore distributions, real or artificial, can be calculated without changing the base finite element mesh. The second approach includes the pore information as STL data into the original CAD model and creates a new adapted finite element mesh for the simulation. Both methods are compared and evaluated for an industrial problem.

Findings

The STL data of defects which the authors received from CT measurements could not be directly applied without repairing them. Therefore, for FEM applications an appropriate repair procedure is proposed. The first approach, which combines the FEM with the FCM, the authors have realized within the commercial software tool Abaqus. This combination performs well, which is demonstrated for test examples, and is also applied for a complex industrial project. The developed in-house code still has some limitations which restrict broader application in industry. The second pure FEM-based approach works well without limitations but requires increasing computational effort if many different pore distributions are to be investigated.

Originality/value

A new simulation approach which combines the FEM with the FCM has been developed and implemented into the commercial Abaqus FEM software. This approach the authors have applied to simulate a real engineering die-cast structure with pores. This approach could become a preferred way to consider pores in practical applications, where the porosity can be derived either from CT measurements or are artificially adopted for design purposes. The authors have also shown how pores can be considered in the standard FEM analysis as well.

Open Access
Article
Publication date: 16 August 2023

Andrea Zani, Alberto Speroni, Andrea Giovanni Mainini, Michele Zinzi, Luisa Caldas and Tiziana Poli

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based…

Abstract

Purpose

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based matrix coupled with a stretchable three-dimensional textile. The paper’s aim is, through a performance-based generative design approach, to develop a high-performance static shading system able to guarantee adequate daylit spaces, a connection with the outdoors and a glare-free environment in the view of a holistic and occupant-centric daylight assessment.

Design/methodology/approach

The paper describes the design and simulation process of a complex static shading system for digital manufacturing purposes. Initially, the optical material properties were characterized to calibrate radiance-based simulations. The developed models were then implemented in a multi-objective genetic optimization algorithm to improve the shading geometries, and their performance was assessed and compared with traditional external louvres and overhangs.

Findings

The system developed demonstrates, for a reference office space located in Milan (Italy), the potential of increasing useful daylight illuminance by 35% with a reduced glare of up to 70%–80% while providing better uniformity and connection with the outdoors as a result of a topological optimization of the shape and position of the openings.

Originality/value

The paper presents the innovative nature of a new composite material that, coupled with the proposed performance-based optimization process, enables the fabrication of optimized shading/cladding surfaces with complex geometries whose formability does not require ad hoc formworks, making the process fast and economic.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 857