Search results

1 – 1 of 1
Open Access
Article
Publication date: 14 March 2022

Jamiu Adetayo Dauda, Suraj A. Rahmon, Ibrahim A. Tijani, Fouad Mohammad and Wakeel O. Okegbenro

The purpose of this study is to find the optimum design of Reinforced Concrete (RC) pile foundation to enable efficient use of structural concrete with greater consequences for…

1932

Abstract

Purpose

The purpose of this study is to find the optimum design of Reinforced Concrete (RC) pile foundation to enable efficient use of structural concrete with greater consequences for global environment and economy.

Design/methodology/approach

A non-linear optimisation technique based on the Generalised Reduced Gradient (GRG) algorithm was implemented to find the minimum cost of RC pile foundation in frictional soil. This was achieved by obtaining the optimum pile satisfying the serviceability and ultimate limit state requirements of BS 8004 and EC 7. The formulated structural optimisation procedure was applied to a case study project to assess the efficiency of the proposed design formulation.

Findings

The results prove that the GRG method in Excel solver is an active, fast, accurate and efficient computer programme to obtain optimum pile design. The application of the optimisation for the case study project shows up to 26% cost reduction compared to the conventional design.

Research limitations/implications

The design and formulation of design constraints will be limited to provisions of BS 8004 and EC 7.

Practical implications

Since the minimum quantity of concrete was attained through optimisation, then minimum cement will be used and thus result in minimum CO2 emission. Therefore, the optimum design of concrete structures is a vital solution to limit the damage to the Earth's climate and the physical environment resulting from high carbon emissions.

Originality/value

The current study considers the incorporation of different soil ground parameters in the optimisation process rather than assuming any pile capacity value for the optimisation process.

Details

Frontiers in Engineering and Built Environment, vol. 2 no. 3
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 1 of 1