Search results

1 – 10 of over 81000
Article
Publication date: 3 September 2019

Hongyao Shen, Xiaoxiang Ye, Guanhua Xu, Linchu Zhang, Jun Qian and Jianzhong Fu

During the 3D printing process, the model needs to add a support structure to ensure structural stability. Excessive support structure reduces printing efficiency and results in…

Abstract

Purpose

During the 3D printing process, the model needs to add a support structure to ensure structural stability. Excessive support structure reduces printing efficiency and results in material cost. A flexible support platform for 3 D printing has been designed. It can form an external support structure to replace the original support structure. This paper aims to study the influence of a model’s build orientation on properties when the model is printed on the platform, aiming to provide users with suitable solutions.

Design/methodology/approach

A fitness function for estimating the support structure with a support length is constructed. The particle swarm optimization (PSO) algorithm is modified and applied to find the build orientation that minimizes the support structure. However, when the model is printed on the platform, the build orientation of the minimum support structure enhances the complexity of the working path, resulting in an increase of printing time, which needs to be avoided. This paper applies a multi-objective particle swarm optimization (MOPSO) algorithm to minimize the support structure while minimizing printing time. The Pareto solution is obtained by the algorithm.

Findings

It is found that the model that has the cantilever structure can reduce more support structure after optimization on the platform, when there is surface quality requirement. When there is no limit, the modified algorithm can minimize the support structure of each model. Considering support structure and printing time, the MOPSO algorithm can easily get optimization results to guide the practical work.

Originality/value

This paper optimizes the model’s build orientation on the flexible support platform by PSO, thereby reducing material cost and improving work efficiency.

Article
Publication date: 10 October 2018

Yang Liu, Zuyu Li, Peng Wei and Shikui Chen

The purpose of this paper is to explore the possibility of combining additive manufacturing (AM) with topology optimization to generate support structures for addressing the…

Abstract

Purpose

The purpose of this paper is to explore the possibility of combining additive manufacturing (AM) with topology optimization to generate support structures for addressing the challenging overhang problem. The overhang problem is considered as a constraint, and a novel algorithm based on continuum topology optimization is proposed.

Design/methodology/approach

A mathematical model is formulated, and the overhang constraint is embedded implicitly through a Heaviside function projection. The algorithm is based on the Solid Isotropic Material Penalization (SIMP) method, and the optimization problem is solved through sensitivity analysis.

Findings

The overhang problem of the support structures is fixed. The optimal topology of the support structures is developed from a mechanical perspective and remains stable as the material volume of support structures changes, which allows engineers to adjust the material volume to save cost and printing time and meanwhile ensure sufficient stiffness of the support structures. Three types of load conditions for practical application are considered. By discussing the uniform distributive load condition, a compromise result is achieved. By discussing the point load condition, the removal work of support structures after printing is alleviated. By discussing the most unfavorable load condition, the worst collapse situation of the printing model during printing process is sufficiently considered. Numerical examples show feasibility and effectiveness of the algorithm.

Research limitations/implications

The proposed algorithm involves time-consuming finite element analysis and iterative solution, which increase the computation burden. Only the overhang constraint and the minimum compliance problem are discussed, while other constraints and objective functions may be of interest.

Practical implications

Compared with most of the existing heuristic or geometry-based support-generating algorithms, the proposed algorithm develops support structures for AM from a mechanical perspective, which is necessary for support structures particularly used in AM for mega-scale construction such as architectures and sculptures to ensure printing success and accuracy of the printed model.

Social implications

With the rapid development of AM, complicated structures result from topology optimization are available for fabrication. The present paper demonstrates a combination of AM and topology optimization, which is the trend of fabricating manner in the future.

Originality/value

This paper remarks the first of attempts to use continuum topology optimization method to generate support structures for AM. The methodology used in this work is theoretically meaningful and conclusions drawn in this paper can be of important instruction value and practical significance.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 March 2015

Christian Lindemann, Thomas Reiher, Ulrich Jahnke and Rainer Koch

This paper aims to present a methodology to help end-users to find appropriate part candidates for the use of the additive manufacturing (AM) technology. These shall be capable of…

2484

Abstract

Purpose

This paper aims to present a methodology to help end-users to find appropriate part candidates for the use of the additive manufacturing (AM) technology. These shall be capable of bringing AM into their businesses. The concept furthermore includes approaches for redesigning current available parts and helps to estimate the economic implications of the use of the technology.

Design/methodology/approach

The approach starts to discuss general economic aspects for the successful use of AM. While describing the introduction of new technologies into existing businesses, the importance of an appropriate part selection for AM is pointed out. A methodology for a part selection process is presented, and the different criteria are developed. An approach for a redesign of the selected parts, including the gathering of requirements, is given based on different sample parts. A variation of criteria to include measures for product piracy is highlighted.

Findings

The methodology has proven applicability in several research and industry projects in aerospace applications. Independent part selections from experts analyzed within a project of the European Space Agency had a 90 per cent overlap with the results. It allows companies with only basic AM knowledge to start a part screening for applicable AM candidates in their own company with a reasonable effort.

Originality/value

The methodology for the redesign process helps to identify the main functions of the products targeted and the relevant environment, so one can benefit from the various advantages that AM has to offer. The selection methodology helps to ask the right questions and to reduce the effort.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2018

Hongyao Shen, Huaidong Diao, Shuhua Yue and Jianzhong Fu

The staircase effect and support structure under overhanging geometry are two inherent weaknesses that reduces the surface quality and induces material waste. This paper aims to…

Abstract

Purpose

The staircase effect and support structure under overhanging geometry are two inherent weaknesses that reduces the surface quality and induces material waste. This paper aims to design a five-axis fused deposition modeling system with interference-free nozzle to solve the problems.

Design/methodology/approach

To facilitate the application of five-axis printing machine, three new printing methods are proposed according to different geometries and application requirements, which include tangential direction printing, normal sculpture printing and compatible printing.

Findings

The static flow beading characteristic is researched to establish the criterion for switching the mode between three-axis printing and five-axis printing. Experiment proves the critical point existing and 51° is the critical point at the given parameters. The concept of dynamic flow beading is proposed. The relationship between equivalent volume and roughness is established based on elaborate experiments, which helps to figure out the boundary between safe area and beading area under different parameters of layer thickness and nozzle diameter.

Originality/value

Three new printing methods are proposed according to different geometries and application requirements, which include tangential direction printing, normal sculpture printing and compatible printing. Considering the special movement situation during five-axis printing process, the dynamic flow beading issue is proposed. The relationship between equivalent volume and roughness is established based on elaborate experiments, which helps to figure out the boundary between safe area and beading area under different parameters of layer thickness and nozzle diameter.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 November 2022

Xishuang Jing, Duanping Lv, Fubao Xie, Chengyang Zhang, Siyu Chen and Ben Mou

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various…

Abstract

Purpose

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various manufacturing fields. However, traditional 3-axis printing has limitations of the support structure and step effect due to its low degree of freedom. The purpose of this paper is to propose a robotic 3D printing system that can realize support-free printing of parts with complex structures.

Design/methodology/approach

A robotic 3D printing system consisting of a 6-degrees of freedom robotic manipulator with a material extrusion system is proposed for multi-axis additive manufacturing applications. And the authors propose an approximation method for the extrusion value E based on the accumulated arc length of the already printed points, which is used to realize the synchronous movement between multiple systems. Compared with the traditional 3-axis printing system, the proposed robotic 3D printing system can provide greater flexibility when printing complex structures and even realize curved layer printing.

Findings

Two printing experiments show that compared with traditional 3D printing, a multi-axis 3D printing system saves 47% and 79% of materials, respectively, and the mechanical properties of curved layer printing using a multi-axis 3D printing system are also better than that of 3-axis printing.

Originality/value

This paper shows a simple and effective method to realize the synchronous movement between multiple systems so as to develop a robotic 3D printing system that can realize support-free printing and verifies the feasibility of the system through experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available

Abstract

Details

Tizard Learning Disability Review, vol. 17 no. 1
Type: Research Article
ISSN: 1359-5474

Open Access
Article
Publication date: 22 November 2022

Xinjun Zhou

Under the dual pressure of resources and environment, many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of…

Abstract

Purpose

Under the dual pressure of resources and environment, many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society. This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice, and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation's ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.

Design/methodology/approach

This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology, management and structural reconstruction to reduce energy consumption and carbon emissions. Among them, the effect of structural energy conservation and emission reduction has become more prominent. It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors. The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.

Findings

Key aspects in improving energy efficiency include re-optimization of energy structure, re-innovation of energy-saving technologies and optimization of transportation organization. Path selection includes continuing to promote electrified railway construction, increasing the use of new and renewable energy sources, and promoting the reform of railway transportation organizations.

Originality/value

This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies, approaches for practice in a Chinese context. To achieve the expected goals, relevant supporting policies and measures need to be formulated, including actively guiding integrated transportation toward railway-oriented development, promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives, focusing on improving the energy efficiency of railways through market behavior. At the same time, it is necessary to pay attention to new phenomena in the railway industry for track and analysis.

Article
Publication date: 1 April 2003

Georgios I. Zekos

Aim of the present monograph is the economic analysis of the role of MNEs regarding globalisation and digital economy and in parallel there is a reference and examination of some…

86938

Abstract

Aim of the present monograph is the economic analysis of the role of MNEs regarding globalisation and digital economy and in parallel there is a reference and examination of some legal aspects concerning MNEs, cyberspace and e‐commerce as the means of expression of the digital economy. The whole effort of the author is focused on the examination of various aspects of MNEs and their impact upon globalisation and vice versa and how and if we are moving towards a global digital economy.

Details

Managerial Law, vol. 45 no. 1/2
Type: Research Article
ISSN: 0309-0558

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3517

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1246

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 81000