Search results

1 – 9 of 9
Article
Publication date: 19 December 2023

Ayşe Nur Dişlitaş, Bilge Albayrak Çeper and Melih Yıldız

In this study, the performance analysis of the split flow turbofan engine with afterburners has been examined using the parametric cycle analysis method. The purpose of this study…

Abstract

Purpose

In this study, the performance analysis of the split flow turbofan engine with afterburners has been examined using the parametric cycle analysis method. The purpose of this study is to examine how engine performance is impacted by design parameters and flight ambient values and to develop a software in this context.

Design/methodology/approach

Software has been developed using the open-source PYTHON programming language to perform performance analysis. Mach number, compressor/fan pressure ratio, bypass ratio and density were used as parameters. The effects of these variables on engine performance parameters were investigated.

Findings

Parametric cycle analysis has been calculated for different flight conditions in the range of 0–2 M and 0–15,000 m altitude for turbofan engines. With this study, basic data were obtained to optimize according to targeted flight conditions.

Practical implications

As a result of the performance analysis, the association between the flight conditions and design parameters of engine were determined. A software has been developed that can be used in the design of supersonic gas turbine engines for fast and easy simulation of the design parameters.

Originality/value

The variables used in the literature have been analyzed, and the results of the studies have been incorporated into the developed software, which can be used in innovative engine design. Software is capable to be developed further with the integration of new algorithms and models.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2023

Rossana Fernandes, Benyang Hu, Zhichao Wang, Zheng Zhang and Ali Y. Tamijani

This paper aims to assess the feasibility of additively manufactured wind tunnel models. The additively manufactured model was used to validate a computational framework allowing…

Abstract

Purpose

This paper aims to assess the feasibility of additively manufactured wind tunnel models. The additively manufactured model was used to validate a computational framework allowing the evaluation of the performance of five wing models.

Design/methodology/approach

An optimized fighter wing was additively manufactured and tested in a low-speed wind tunnel to obtain the aerodynamic coefficients and deflections at different speeds and angles of attack. The flexible wing model with optimized curvilinear spars and ribs was used to validate a finite element framework that was used to study the aeroelastic performance of five wing models. As a computationally efficient optimization method, homogenization-based topology optimization was used to generate four different lattice internal structures for the wing in this study. The efficiency of the spline-based optimization used for the spar-rib model and the lattice-based optimization used for the other four wings were compared.

Findings

The aerodynamic loads and displacements obtained experimentally and computationally were in good agreement, proving that additive manufacture can be used to create complex accurate models. The study also shows the efficiency of the homogenization-based topology optimization framework in generating designs with superior stiffness.

Originality/value

To the best of the authors’ knowledge, this is the first time a wing model with curvilinear spars and ribs was additively manufactured as a single piece and tested in a wind tunnel. This research also demonstrates the efficiency of homogenization-based topology optimization in generating enhanced models of different complexity.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 November 2023

Mengxia Du, Qiao Wang, Yan Zhang, Yu Bai, Chunqiu Wei and Chunyan Liu

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack…

Abstract

Purpose

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack analysis of flow mechanisms. Owing to computational difficulties, few people use numerical algorithms to combine them for discussion. Hence, this study aims to make a deep inquiry into the laminar flow and heat transfer of compressible Newtonian fluid in hypersonic aircraft with small attack angles.

Design/methodology/approach

In this paper, on the basis of mass, momentum and energy conservation laws, the governing equations of the hypersonic boundary layer are established. Viscosity, specific heat capacity and thermal conductivity are considered nonlinear functions concerning temperature. In virtue of the MacCormack finite difference method, the stationary numerical solutions are solved directly, and the validity of the algorithm is verified.

Findings

The results demonstrate that at Mach number 5, compared to the 0° attack angle, the maximum temperature near-wall at the 3° attack angle increases by about 25%. An enjoyable phenomenon is discovered, where the position corresponding to the maximum wall shear force shifts back as the attack angle and Mach number increase. The relationship between the near-wall maximum temperature versus attack angle and Mach number is fitted through numerical calculation results.

Originality/value

Empirical formulas can be used to estimate heat transfer characteristics at small attack angles, which will guide the design of aircraft thermal protection systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2024

Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R. and Boomadevi P.

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental…

Abstract

Purpose

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.

Design/methodology/approach

Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.

Findings

From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.

Originality/value

The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 September 2023

Xiaohan Xu, Xudong Huang, Ke Zhang and Ming Zhou

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method…

Abstract

Purpose

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method that enables a machine to learn how to design it.

Design/methodology/approach

The airfoil design process was solved using the reinforcement learning (RL) method. An intellectual method based on a modified deep deterministic policy gradient (DDPG) algorithm was implemented. The new method was applied to agents to learn the design policy under dynamic constraints. The agents explored the design space with the help of a surrogate model and airfoil parameterization.

Findings

The agents successfully learned to design the airfoils. The loss coefficients of a controlled diffusion airfoil improved by 1.25% and 3.23% in the two- and four-dimensional design spaces, respectively. The agents successfully learned to design under various constraints. Additionally, the modified DDPG method was compared with a genetic algorithm optimizer, verifying that the former was one to two orders of magnitude faster in policy searching. The NACA65 airfoil was redesigned to verify the generalization.

Originality/value

It is feasible to consider the compressor design as an RL problem. Trained agents can determine and record the design policy and adapt it to different initiations and dynamic constraints. More intelligence is demonstrated than when traditional optimization methods are used. This methodology represents a new, small step toward the intelligent design of compressors.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Jonathan Núñez Aedo, Marcela A. Cruchaga and Mario A. Storti

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Abstract

Purpose

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Design/methodology/approach

A fluid–solid coupled algorithm is proposed to describe the motion of a rigid buoy under the effects of waves. The Navier–Stokes equations are solved with the open-source finite volume package Code Saturne, in which a free-surface capture technique and equations of motion for the solid are implemented. An ad hoc experiment on a laboratory scale is built. A buoy is placed into a tank partially filled with water; the tank is mounted into a shake table and subjected to controlled motion that promotes waves. The experiment allows for recording the evolution of the free surface at the control points using the ultrasonic sensors and the movement of the buoy by tracking the markers by postprocessing the recorded videos. The numerical results are validated by comparison with the experimental data.

Findings

The implemented free-surface technique, developed within the framework of the finite-volume method, is validated. The best-obtained agreement is for small amplitudes compatible with the waves evolving under deep-water conditions. Second, the algorithm proposed to describe rigid-body motion, including wave analysis, is validated. The numerical body motion and wave pattern satisfactorily matched the experimental data. The complete 3D proposed model can realistically describe buoy motions under the effects of stationary waves.

Originality/value

The novel aspects of this study encompass the implementation of a fluid–structure interaction strategy to describe rigid-body motion, including wave effects in a finite-volume context, and the reported free-surface and buoy position measurements from experiments. To the best of the authors’ knowledge, the numerical strategy, the validation of the computed results and the experimental data are all original contributions of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2024

Tong-Tong Lin, Ming-Zhi Yang, Lei Zhang, Tian-Tian Wang, Yu Tao and Sha Zhong

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in…

Abstract

Purpose

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in operation. The arch structure has a significant effect on the improvement of the aerodynamic lift of the HC and TC of the maglev train. Therefore, this study aims to investigate the effect of a streamlined arch structure on the aerodynamic performance of a 600 km/h maglev train.

Design/methodology/approach

Three typical streamlined arch structures for maglev trains are selected, i.e. single-arch, double-arch and triple-arch maglev trains. The vortex structure, pressure of train surface, boundary layer, slipstream and aerodynamic forces of the maglev trains with different arch structures are compared by adopting improved delayed detached eddy simulation numerical calculation method. The effects of the arch structures on the aerodynamic performance of the maglev train are analyzed.

Findings

The dynamic topological structure of the wake flow shows that a change in arch structure can reduce the vortex size in the wake region; the vortex size with double-arch and triple-arch maglev trains is reduced by 15.9% and 23%, respectively, compared with a single-arch maglev train. The peak slipstream decreases with an increase in arch structures; double-arch and triple-arch maglev trains reduce it by 8.89% and 16.67%, respectively, compared with a single-arch maglev train. The aerodynamic force indicates that arch structures improve the lift imbalance between the HC and TC of a maglev train; double-arch and triple-arch maglev trains improve it by 22.4% and 36.8%, respectively, compared to a single-arch maglev train.

Originality/value

This study compares the effects of a streamlined arch structure on a maglev train and its surrounding flow field. The results of the study provide data support for the design and safe operation of high-speed maglev trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

31

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 9 of 9