Search results

1 – 5 of 5
Open Access
Article
Publication date: 17 October 2022

Qianqian Li, Bo Zhang, Tao Yang, Qingwen Dai, Wei Huang and Xiaolei Wang

The purpose of this paper is to artificially construct a functional surface with self-propulsion flow characteristics for the directional transportation of propellant in surface…

Abstract

Purpose

The purpose of this paper is to artificially construct a functional surface with self-propulsion flow characteristics for the directional transportation of propellant in surface tension tanks.

Design/methodology/approach

In this study, a method to enhance the propulsion efficiency by using functional surfaces of self-propulsion performance was proposed. Superhydrophilic wedged-groove with the superhydrophobic background was fabricated and the self-propulsion capacity was verified.

Findings

It is found that the self-propulsion capacity is related to the divergence angle of the wedged-groove in the hydrophilic area, and the velocity of the droplets on the deflector plate is the largest with the divergence angle of 4°; the temperature gradient field formed by the condensing device at the nozzle can accelerate the droplet outflow from the tank.

Originality/value

Realization of this idea provides an accurate control strategy for the complex flow process of propellant in plate surface tension tanks, which could enhance the efficiency of the tension tank significantly.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 30 January 2007

85

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 2
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 8 February 2008

98

Abstract

Details

Soldering & Surface Mount Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 1 March 2006

90

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1124

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Access

Only content I have access to

Year

Content type

1 – 5 of 5