Search results

1 – 10 of 15
Article
Publication date: 18 October 2018

Sunpreet Singh, Narinder Singh, Munish Gupta, Chander Prakash and Rupinder Singh

The purpose of this paper is to fabricate acrylonitrile-butadiene-styrene (ABS)/high impact polystyrene (HIPS) based multi-material geometries using a low cost polymer printer. At…

480

Abstract

Purpose

The purpose of this paper is to fabricate acrylonitrile-butadiene-styrene (ABS)/high impact polystyrene (HIPS) based multi-material geometries using a low cost polymer printer. At the same time, efforts have been made to investigate the mechanical characteristics of the obtained prints and to perform the optimization using the Taguchi-Grey (TGRA) method.

Design/methodology/approach

Initially, the feedstock materials were in-house fabricated in the form of filament wires, workable with fused filament fabrication (FFF) technique, of 1.75 ± 0.1 mm diameter by using a single screw extruder. Multi-material structures were fabricated using variable parameters (such as: raster angles, layer height, fill density and solid layers) and the experimentation was conducted as per Taguchi L18 array. Mechanical responses obtained by performing tensile, impact and bending test were studied in response to input variables and ultimately optimized settings were obtained, for individual as well as multiple parameters). Scanning electron microscopy (SEM) analysis was performed to analyze the fractured surfaces.

Findings

The Signal/Noise (S/N) plots for the quality characteristics highlighted that selected input parameters significantly influenced the obtained values for tensile strength, impact strength and flexural strength. Micrographs of the fractured specimens showed the occurrence of brittle fracture with higher levels of perimeter, infill density and solid layers. The extent of delamination was also increased under the bending load and further increased by increasing solid layers.

Practical implications

The results of the study strongly advocated the utility of fabricated multi-materials structures in automotive, aerospace and other manufacturing industries.

Originality/value

This work represents the fabrication, testing and analysis of polymer-based multi-material structures for engineering applications.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 January 2020

Sunpreet Singh and Rupinder Singh

Additive manufacturing (AM) is one of the latest and most advanced technologies that are continuously expanding into various field applications. Undoubtedly, fused deposition…

Abstract

Purpose

Additive manufacturing (AM) is one of the latest and most advanced technologies that are continuously expanding into various field applications. Undoubtedly, fused deposition modeling (FDM) is one of the oldest and extensively used AM technologies not only because of the advantage of low cost, comparatively moderate production speed and negligible wastage but also due to acceptance of a wide range of thermoplastics, reinforced and blended feedstock for making the end product suitable for service. The purpose of this work to perform mechanical characterization of standard samples printed on FDM with acrylonitrile butadiene styrene (ABS), shape memory polymer (SMP; make PolyflexTM) and ABS/PolyflexTM blend and a comparative study from AM view point.

Design/methodology/approach

A low-cost desktop-based FDM setup was used for the fabrication of the test specimens under different processing conditions. Experiments were conducted as per obtained control log, and statistical analysis was conducted to understand the effect of selected variables in response of measured properties. Further, scanning electron microscopy-based micrographs were analyzed to understand the fracture mechanisms.

Findings

The obtained results highlighted that the mechanical properties of FDM parts are strongly influenced by the selected process variables. However, in case of most of the measured properties, selection of suitable feedstock has dominated the other input variables. Further, the results of test parts made with in-house developed ABS/SMP blend have showed the attainment of remarkable values of both strength and elasticity.

Originality/value

This work is held to empower the use of FDM technology to fabricate advanced and robust components for serving highly demanding applications.

Article
Publication date: 3 April 2017

Rupinder Singh and Sunpreet Singh

The present research work aims to study the friction coefficient in functionally graded rapid prototyping of Al–Al2O3 composite prepared via fused deposition modelling…

Abstract

Purpose

The present research work aims to study the friction coefficient in functionally graded rapid prototyping of Al–Al2O3 composite prepared via fused deposition modelling (FDM)-assisted investment casting (IC) process. The optimized settings of the process parameters (namely, filament proportion, volume of FDM pattern, density of FDM pattern, barrel finishing (BF) time, BF media weight and number of IC slurry layers) suggested in the present research work will help fabricate parts possessing higher frictional coefficient.

Design/methodology/approach

Initially, melt flow index (MFI) of two different proportions of Nylon6-Al–Al2O3 (to be used as an alternative FDM filament material) was tested on the melt flow indexer and matched with MFI of commercially used acrylonitrile–butadiene–styrene filament. After this, the selected proportions of Nylon6-Al–Al2O3 were prepared in the form of the FDM filament by using a single screw extruder. Further, this FDM filament has been used for developing sacrificial IC patterns in the existing FDM system which was barely finished to improve their surface finish. Castings developed were tested for their wear resistance properties on a pin-on-disc-type tribo-tester under dry conditions at sliding conditions to check their suitability as a frictional device for industrial applications. In the methodology part, Taguchi L18 orthogonal array was used to study the effect of selected process variables on the coefficient of friction (μ).

Findings

It has been found that filament proportion, volume of FDM pattern and density of FDM pattern have significantly affected the μ-values. Further, density of the FDM pattern was found to have 91.62 per cent contribution in obtaining μ-values. Scanning electron micrographs highlighted uniform distribution of Al2O3 particles in the Al-matrix at suggested optimized settings.

Practical implications

The present methodology shows the development of a functional graded material that consisted of surface reinforcement with Al2O3 particles, which could have applications for manufacturing friction surfaces such as clutch plates, brake drum, etc.

Originality/value

This paper describes the effect of process parameters on wear properties of the Al–Al2O3 composite developed as a functionally graded material by the FDM-based pattern in the IC process.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 March 2016

Rupinder Singh, Sunpreet Singh and Karan Mankotia

Acrylonitrile-butadiene-styrene (ABS)-based plastic is one of the most widely used filament materials for fused deposition modelling (FDM) applications. Because the FDM system, as…

Abstract

Purpose

Acrylonitrile-butadiene-styrene (ABS)-based plastic is one of the most widely used filament materials for fused deposition modelling (FDM) applications. Because the FDM system, as well as its filament material (ABS), has been patented by commercial manufacturers, the cost of the filament material is significantly high, which affects the commercialization of this technology for medium- and small-scale industries. This problem may be addressed by developing alternative FDM filament material at the user end. The present research work aims to make an effort to develop cost-effective ABS filament with acceptable mechanical properties at par with the filament prepared by commercial manufacturers. Further, mathematical models have been developed for optimizing mechanical properties (like: tensile strength, Young’s modulus and dimensional accuracy) of in-house-fabricated filament.

Design/methodology/approach

The processing parameters (such as barrel temperature, screw speed and take-up speed) of single-screw extruder used to fabricate ABS filament have been studied and optimized.

Findings

Although the mechanical properties of fabricated ABS filament were not better than those of the original equipment manufacturer (OEM) filament, yet significant cost reduction was achieved with in-house fabrication. Mechanical properties like tensile strength, Young’s modulus and dimensional accuracy have been optimized using response surface methodology (RSM) for acceptability of in-house-fabricated filament (for commercial applications) at par with the OEM filament.

Originality/value

This paper highlights the systematic steps for in-house fabrication of cost-effective FDM filament. Further, RSM-based mathematical models have been developed for optimizing mechanical properties of newly fabricated filament.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 October 2018

Amarveer Singh Mangat, Sunpreet Singh, Munish Gupta and Ravinder Sharma

The purpose of this paper is to explore and investigate the mechanical as well as bacterial characteristics of chemically treated waste natural fiber inserted three-dimensional…

Abstract

Purpose

The purpose of this paper is to explore and investigate the mechanical as well as bacterial characteristics of chemically treated waste natural fiber inserted three-dimensional structures (NFi3DS) produced with fused filament deposition (FFD) for biomedical applications.

Design/methodology/approach

In this work, a novel approach has been used for developing the customized porous structures particularly for scaffold applications. Initially, raw animal fibers were collected, and thereafter, the chemical treatment has been performed for making their wise utility in biomedical structures. For this purpose, silk fiber and sheep wool fibers were used as laminations, whereas polylactic acid was used as matrix material. A low-cost desktop time additive manufacturing setup was used for making the customized and porous parts by considering type of fiber, number of laminates, infill density and raster angle as input parameters.

Findings

The results obtained after using design of experimental technique highlighted that output characteristics (such as dimensional accuracy, hardness, three-point bending strength and bacterial test) are influenced by input parameters, as reported in the obtained signal/noise plots and analysis of variance. Optimum level of input parameters has also been found through Taguchi L9 orthogonal array, for single parametric optimization, and teaching learning-based algorithm and particle swarm optimization, for multiple parametric optimization. Overall, the results of the studies supported the use of embedded structures for scaffold-based biomedical applications.

Research limitations/implications

Presently, NFi3DS were produced by using the hand-lay-based manual approach that affected the uniform insert’s distribution and thickness. It is advised to use the automatic fiber placement system, synced with a three-dimensional printer, to achieve greater geometrical precision.

Practical implications

As both natural fibers and polymer matrix used in this work are well established for their biological properties, hence the methodology explored in this work will help the practitioners/academicians in developing highly compatible scaffold structures.

Social implications

The present work defines a new practice where the researchers can use natural fibers to reduce the cost associated with fabrication of customized scaffold prints.

Originality/value

The development of natural fiber embedded FFD-based structures is not yet explored for their feasibility in biomedical applications.

Details

Rapid Prototyping Journal, vol. 24 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2016

Sunpreet Singh and Rupinder Singh

This paper aims to investigate the dimensional accuracy of aluminium (Al) matrix composites (AMCs) prepared by using an alternative reinforced fused deposition modeling…

Abstract

Purpose

This paper aims to investigate the dimensional accuracy of aluminium (Al) matrix composites (AMCs) prepared by using an alternative reinforced fused deposition modeling (FDM)-based sacrificial patterns in investment casting (IC) process. Further in this work, a barrel finishing (BF) process has been introduced as an intermediate step for the improvement of surface finish of sacrificial patterns and to study the effect of BF process parameters on dimensional features of the casted AMCs. In the present research, an effort has been made to ascertain the capability/producibility of the proposed route for obtaining good geometrical tolerances.

Design/methodology/approach

Alternative reinforced FDM filaments were developed using single screw extruder whose melt flow index was matched with the commercial acrylonitrile–butadiene–styrene filament. IC sacrificial patterns, fabricated on existing FDM system without making any change in its hardware/software, were barrel finished for improving the surface finish. The effect of FDM, BF and IC process parameters, namely, type of filament, volume of CAD-based cubical pattern, pattern density, BF time, BF media weight and numbers of IC slurry layers, was studied using Taguchi L18 OA approach.

Findings

Dimensional accuracy of casted AMCs developed was optimized successfully using Taguchi L18 orthogonal array. Optical microscopic analysis made on the castings highlighted the presence of Al2O3 particles which will result into the improvement of mechanical and tribological properties. International tolerance grade of cast AMCs was calculated and found acceptable as per ISO standard UNI-EN-20286-I (1995). Further, there are strong possibilities of process to be under statistical control at proposed settings.

Originality/value

The paper describes a new route for the development of AMC. The effect of FDM, BF and IC process parameters on dimensional accuracy of AMCs developed is also highlighted in the present research.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 November 2018

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Rajkumar V. Patil, P.T. Perumal, Veluchamy Amutha Barathi, Kalpattu K. Balasubramanian, Seeram Ramakrishna and N.U. Maheshwari

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of…

Abstract

Purpose

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology.

Design/methodology/approach

In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated.

Findings

The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future.

Originality/value

This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2021

Erfan Rezvani Ghomi, Saeideh Kholghi Eshkalak, Sunpreet Singh, Amutha Chinnappan, Seeram Ramakrishna and Roger Narayan

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing…

Abstract

Purpose

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues.

Design/methodology/approach

Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK.

Findings

The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics.

Originality/value

The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1129

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 24 June 2020

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Arjun Subramanian, Rahul Sahay, Amutha Cinappan and Seeram Ramakrishna

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical…

1415

Abstract

Purpose

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical, the development of a wide range of biomaterials has catalysed the considerable role of 3D printing (3DP), where it functions as synthetic frameworks in the form of scaffolds, constructs or matrices. The purpose of this paper is to present the state-of-the-art literature coverage of 3DP applications in tissue engineering (such as customized scaffoldings and organs, and regenerative medicine).

Design/methodology/approach

This review focusses on various 3DP techniques and biomaterials for tissue engineering (TE) applications. The literature reviewed in the manuscript has been collected from various journal search engines including Google Scholar, Research Gate, Academia, PubMed, Scopus, EMBASE, Cochrane Library and Web of Science. The keywords that have been selected for the searches were 3 D printing, tissue engineering, scaffoldings, organs, regenerative medicine, biomaterials, standards, applications and future directions. Further, the sub-classifications of the keyword, wherever possible, have been used as sectioned/sub-sectioned in the manuscript.

Findings

3DP techniques have many applications in biomedical and TE (B-TE), as covered in the literature. Customized structures for B-TE applications are easy and cost-effective to manufacture through 3DP, whereas on many occasions, conventional technologies generally become incompatible. For this, this new class of manufacturing must be explored to further capabilities for many potential applications.

Originality/value

This review paper presents a comprehensive study of the various types of 3DP technologies in the light of their possible B-TE application as well as provides a future roadmap.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 15