Search results

1 – 10 of 324
Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 October 2023

Xiaoyu Liu, Feng Xu, Zhipeng Zhang and Kaiyu Sun

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal…

Abstract

Purpose

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal or attempted fall accidents. All of them are worthy of studying to take measures to prevent future accidents. Detecting fall portents can proactively and comprehensively help managers assess the risk to workers as well as in the construction environment and further prevent fall accidents.

Design/methodology/approach

This study focused on the postures of workers and aimed to directly detect fall portents using a computer vision (CV)-based noncontact approach. Firstly, a joint coordinate matrix generated from a three-dimensional pose estimation model is employed, and then the matrix is preprocessed by principal component analysis, K-means and pre-experiments. Finally, a modified fusion K-nearest neighbor-based machine learning model is built to fuse information from the x, y and z axes and output the worker's pose status into three stages.

Findings

The proposed model can output the worker's pose status into three stages (steady–unsteady–fallen) and provide corresponding confidence probabilities for each category. Experiments conducted to evaluate the approach show that the model accuracy reaches 85.02% with threshold-based postprocessing. The proposed fall-portent detection approach can extract the fall risk of workers in the both pre- and post-event phases based on noncontact approach.

Research limitations/implications

First, three-dimensional (3D) pose estimation needs sufficient information, which means it may not perform well when applied in complicated environments or when the shooting distance is extremely large. Second, solely focusing on fall-related factors may not be comprehensive enough. Future studies can incorporate the results of this research as an indicator into the risk assessment system to achieve a more comprehensive and accurate evaluation of worker and site risk.

Practical implications

The proposed machine learning model determines whether the worker is in a status of steady, unsteady or fallen using a CV-based approach. From the perspective of construction management, when detecting fall-related actions on construction sites, the noncontact approach based on CV has irreplaceable advantages of no interruption to workers and low cost. It can make use of the surveillance cameras on construction sites to recognize both preceding events and happened accidents. The detection of fall portents can help worker risk assessment and safety management.

Originality/value

Existing studies using sensor-based approaches are high-cost and invasive for construction workers, and others using CV-based approaches either oversimplify by binary classification of the non-entire fall process or indirectly achieve fall-portent detection. Instead, this study aims to detect fall portents directly by worker's posture and divide the entire fall process into three stages using a CV-based noncontact approach. It can help managers carry out more comprehensive risk assessment and develop preventive measures.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 August 2023

Xian Yun Tan, Norhayati Mahyuddin, Syahrul Nizam Kamaruzzaman, Norhayati Mat Wajid and Abdul Murad Zainal Abidin

Commercial buildings, which include office buildings, are one of the three major energy-consuming sectors, alongside industrial and transportation sectors. The vast increase in…

Abstract

Purpose

Commercial buildings, which include office buildings, are one of the three major energy-consuming sectors, alongside industrial and transportation sectors. The vast increase in the number of buildings is a positive sign of the rapid development of Malaysia. However, most Malaysian government office buildings tend to consume energy inefficiently due to lack of energy optimization. Most of the previous studies focused on the performance of green buildings in fulfilling the green development guidelines. As such, it is essential to study the energy performance of existing government office buildings that were constructed before most energy-efficient standards were implemented to mitigate energy wastage due to the lack of energy optimization. This study aims to analyse the energy performance of existing non-green Malaysian government office buildings and the factors that influence building energy consumption, as well as to evaluate the efficacy of the existing energy conservation measures.

Design/methodology/approach

This study was conducted by a literature review and case study. The chosen buildings are six government office building blocks located in Kuala Lumpur, the capital city of Malaysia. In this study, a literature review has been conducted on the common factors affecting energy consumption in office buildings. The energy consumption data of the buildings were collected to calculate the building energy intensity (BEI). The BEI was compared to the MS1525:2019 and GBI benchmarks to evaluate energy performance. SketchUp software was utilized to illustrate the solar radiation and sun path diagram of the case study buildings. Finally, recommendations were derived for retrofit strategies based on non-design factors and passive design factors.

Findings

In typical government office buildings, the air-conditioning system consumed the most energy at 65.5%, followed by lighting system at 22.6%, and the remaining 11.9% was contributed by office appliances. The energy performance of the case study buildings is considered as satisfactory as the BEI did not exceed the MS1525:2019 benchmark of 200 kWh/m2/year. The E Block recorded the highest BEI of 183.12 kWh/m2/year in 2020 due to its north-east orientation which is exposed to the most solar radiation. Besides, E Block consists of rooms that can accommodate large number of occupants. As such, non-design factors which include higher occupancy rate and higher cooling demand due to high outdoor temperature leads to higher energy consumption. By considering passive design features such as building orientation and building envelope thermal properties, energy consumption can be reduced significantly.

Originality/value

This study provided a comprehensive insight into the energy performance of Malaysian government office buildings, which were constructed before the energy-efficient standards being introduced. By calculating the BEI of six government office buildings, it is found that the energy performance of the case study buildings fulfils the MS1525 benchmark, and that all their BEIs are below 200 kWh/m2/year. Malaysia's hot and humid climate significantly affects a building's cooling load, and it is found the air-conditioning system is the major energy consumer of Malaysian government office buildings. This study discusses the efficacy of the energy-saving measures implemented in the case study buildings to optimize energy consumption. Recommendations were derived based on the non-design factors and passive design factors that affected the energy consumption of the case study building. It is envisioned that this study can provide practical strategies for retrofit interventions to reduce energy consumption in Malaysian office buildings as well as for office buildings that are in a similar climate.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 13 June 2023

Fayaz Kharadi, Karthikeyan A, Virendra Bhojwani, Prachi Dixit, Nand Jee Kanu and Nidhi Jain

The purpose of this study is to achieve lower and lower temperature as infrared sensors works faster and better used for space application. For getting good quality images from…

Abstract

Purpose

The purpose of this study is to achieve lower and lower temperature as infrared sensors works faster and better used for space application. For getting good quality images from space, the infrared sensors are need to keep in cryogenic temperature. Cooling to cryogenic temperatures is necessary for space-borne sensors used for space applications. Infrared sensors work faster or better at lower temperatures. It is the need for time to achieve lower and lower temperatures.

Design/methodology/approach

This study presents the investigation of the critical Stirling cryocooler parameters that influence the cold end temperature. In the paper, the design approach, the dimensions gained through thermal analysis, experimental procedure and testing results are discussed.

Findings

The effect of parameters such as multilayer insulation, helium gas charging pressure, compressor input voltage and cooling load was investigated. The performance of gold-plated and aluminized multilayer insulation is checked. The tests were done with multilayer insulation covering inside and outside the Perspex cover.

Practical implications

By using aluminized multilayer insulation inside and outside the Perspex cover, the improvement of 16 K in cool-down temperature was achieved. The cryocooler is charged with helium gas. The pressure varies between 14 and 18 bar. The optimum cooling is obtained for 17 bar gas pressure. The piston stroke increased as the compressor voltage increased, resulting in total helium gas compression. The optimum cool-down temperature was attained at 85 V.

Originality/value

The cryocooler is designed to achieve the cool-down temperature of 2 W cooling load at 100 K. The lowest cool-down temperature recorded was 105 K at a 2 W cooling load. Multilayer insulation is the major item that keeps the thermal radiation from the sun from reaching the copper tip.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 March 2024

Qianmai Luo, Chengshuang Sun, Ying Li, Zhenqiang Qi and Guozong Zhang

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the…

Abstract

Purpose

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the application of the modern risk management methods. As an emerging technology, digital twin has already made valuable contributions to safety risk management in many fields. Therefore, exploring the application of digital twin technology in construction safety risk management is of great significance. The purpose of this study is to explore the current research status and application potential of digital twin technology in construction safety risk management.

Design/methodology/approach

This study followed a four-stage literature processing approach as outlined in the systematic literature review procedure guidelines. It then combined the quantitative analysis tools and qualitative analysis methods to organize and summarize the current research status of digital twin technology in the field of construction safety risk management, analyze the application of digital twin technology in construction safety risk management and identify future research trends.

Findings

The research findings indicate that the application of digital twin technology in the field of construction safety risk management is still in its early stages. Based on the results of the literature analysis, this paper summarizes five aspects of digital twin technology's application in construction safety risk management: real-time monitoring and early warning, safety risk prediction and assessment, accident simulation and emergency response, safety risk management decision support and safety training and education. It also proposes future research trends based on the current research challenges.

Originality/value

This study provides valuable references for the extended application of digital twin technology and offers a new perspective and approach for modern construction safety risk management. It contributes to the enhancement of the theoretical framework for construction safety risk management and the improvement of on-site construction safety.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 September 2023

Mohammadreza Akbari

The purpose of this study is to examine how the implementation of edge computing can enhance the progress of the circular economy within supply chains and to address the…

Abstract

Purpose

The purpose of this study is to examine how the implementation of edge computing can enhance the progress of the circular economy within supply chains and to address the challenges and best practices associated with this emerging technology.

Design/methodology/approach

This study utilized a streamlined evaluation technique that employed Latent Dirichlet Allocation modeling for thorough content analysis. Extensive searches were conducted among prominent publishers, including IEEE, Elsevier, Springer, Wiley, MDPI and Hindawi, utilizing pertinent keywords associated with edge computing, circular economy, sustainability and supply chain. The search process yielded a total of 103 articles, with the keywords being searched specifically within the titles or abstracts of these articles.

Findings

There has been a notable rise in the volume of scholarly articles dedicated to edge computing in the circular economy and supply chain management. After conducting a thorough examination of the published papers, three main research themes were identified, focused on technology, optimization and circular economy and sustainability. Edge computing adoption in supply chains results in a more responsive, efficient and agile supply chain, leading to enhanced decision-making capabilities and improved customer satisfaction. However, the adoption also poses challenges, such as data integration, security concerns, device management, connectivity and cost.

Originality/value

This paper offers valuable insights into the research trends of edge computing in the circular economy and supply chains, highlighting its significant role in optimizing supply chain operations and advancing the circular economy by processing and analyzing real time data generated by the internet of Things, sensors and other state-of-the-art tools and devices.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 2 May 2023

Cevdet Bulut and Philip Fei Wu

Agriculture is one sector where the Internet of things (IoT) is expected to make a major impact. Yet, its adoption in the sector falls behind expectations. The purpose of this…

Abstract

Purpose

Agriculture is one sector where the Internet of things (IoT) is expected to make a major impact. Yet, its adoption in the sector falls behind expectations. The purpose of this paper is to present the state-of-the-art of IoT in agriculture and investigate its slow adoption in the sector.

Design/methodology/approach

The authors have undertaken a systematic review and a synthesis of 1355 relevant publications over the last decade.

Findings

This literature review reveals that the “big three” barriers for the overall sector are cost, skills and standardization. The lack of connectivity and data governance are two key reasons why most of the proposed IoT solutions are standalone systems of limited scope, while the majority of commercial IoT efforts focus on practices in the protected indoor environment. Lastly, the analysis of past research along the five layers of the IoT system architecture reveals limited attention to barriers and solutions at the business layer, which represents a research opportunity for information systems scholars.

Research limitations/implications

It is possible that some of relevant publications were missed in the literature search, although the search queries were kept as broad as possible to avoid the exclusion of any relevant work. Any publication written in any other language other than English was excluded from the review. Given the geographical distribution of the reviewed English publications (see section 4.1), it is highly likely that important works written by Chinese and European scholars in their native language were overlooked.

Practical implications

This study provides practical insights into the technical and organisational challenges on the ground. It is the hope that this literature review lays the groundwork for IS researchers who are well positioned to investigate technology adoption challenges in the relatively understudied agriculture sector.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review of adoption barriers and solutions across all five layers of the IoT system architecture.

Details

Internet Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1066-2243

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 324