Search results

1 – 10 of 12
Open Access
Article
Publication date: 12 December 2022

Weicheng Guo, Chongjun Wu, Xiankai Meng, Chao Luo and Zhijian Lin

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various…

Abstract

Purpose

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various materials with the theory of molecular dynamics (MD), and some preliminary conclusions have been obtained. However, the application of MD simulation is more limited compared with traditional finite element model (FEM) simulation technique due to the complex modeling approach and long computation time. Therefore, more studies on the MD simulations are required to provide a reliable theoretical basis for the nanoscale interpretation of grinding process. This study investigates the crystal structures, dislocations, force, temperature and subsurface damage (SSD) in the grinding of iron-nickel alloy using MD analysis.

Design/methodology/approach

In this study the simulation model is established on the basis of the workpiece and single cubic boron nitride (CBN) grit with embedded atom method and Morse potentials describing the forces and energies between different atoms. The effects of grinding parameters on the material microstructure are studied based on the simulation results.

Findings

When CBN grit goes through one of the grains, the arrangement of atoms within the grain will be disordered, but other grains will not be easily deformed due to the protection of the grain boundaries. Higher grinding speed and larger cutting depth can cause greater impact of grit on the atoms, and more body-centered cubic (BCC) structures will be destroyed. The dislocations will appear in grain boundaries due to the rearrangement of atoms in grinding. The increase of grinding speed results in the more transformation from BCC to amorphous structures.

Originality/value

This study is aimed to study the grinding of Fe-Ni alloy (maraging steel) with single grit through MD simulation method, and to reveal the microstructure evolution within the affected range of SSD layer in the workpiece. The simulation model of polycrystalline structure of Fe-Ni maraging steel and grinding process of single CBN grit is constructed based on the Voronoi algorithm. The atomic accumulation, transformation of crystal structures, evolution of dislocations as well as the generation of SSD are discussed according to the simulation results.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Book part
Publication date: 4 May 2018

Sutrisno, Rayandra Asyhar, Wimpy Prendika, Hilda Amanda and Fachrur Razi

Purpose – This paper aims to detect or identify the presence of hydrocarbon infiltration on sampling point in the Rambe River area according to the obtained VOCs and the adsorbed…

Abstract

Purpose – This paper aims to detect or identify the presence of hydrocarbon infiltration on sampling point in the Rambe River area according to the obtained VOCs and the adsorbed SVOCs.

Design/Methodology/Approach – The Gore-sorber method has been used to capture volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) as indicators of subsurface hydrocarbon generation and entrapment. This method is usually used in environmental surveys for the oil investigations in certain areas for surface survey screening, designed to collect a broad range of VOCs and (SVOCs) at lower concentrations, quickly and inexpensively. The results also indicated a general correlation between the GORE-SORBER and reference method data. The research was conducted in Rambe River Village, Tebing Tinggi sub-district of Tanjung Jabung Barat district, Jambi Province Indonesia. The collection of the Gore-Sorber modules were analyzed using a gas chromatography-mass spectrometer thermal desorption (GC/MS).

Findings – The results showed that from all sampling points in Tebing Tinggi areas, the dominant components detected are carbonyl sulphide, dimethyl sulfide, ethane, propane, butane, 2-methyl butane, pentane, and carbon sulfide with carbon chain in the range C2-C5. These hydrocarbon gases (C1-C4) which may be from thermogenic or microbial processes. The highest concentrations of carbonyl sulfide were 392.67 ng and dimethyl disulfide 261.90 ng.

Originality/Value – In addition to estimate and predict the petroleum formation, this article provides information about the presence of oil fields in the area of the Sungai Rambe Village

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 29 August 2023

Yangsheng Ye, Degou Cai, Qianli Zhang, Shaowei Wei, Hongye Yan and Lin Geng

This method will become a new development trend in subgrade structure design for high speed railways.

Abstract

Purpose

This method will become a new development trend in subgrade structure design for high speed railways.

Design/methodology/approach

This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China, Japan, France, Germany, the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.

Findings

It is found that in foreign countries, the layered reinforced structure is generally adopted for the subgrade bed of high speed railways, and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed, while the simple structure is adopted in China; in foreign countries, different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice, while in China, compaction coefficient, subsoil coefficient and dynamic deformation modulus are adopted for such evaluation; in foreign countries, the subgrade top deformation control method, the subgrade bottom deformation control method, the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways, while in China, dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design. However, the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.

Originality/value

This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 30 October 2020

Jiao-Long Zhang, Xian Liu, Yong Yuan, Herbert A. Mang and Bernhard L.A. Pichler

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to…

Abstract

Purpose

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to the kinematic and static variables at the initial cross-section. The purpose of this paper is to demonstrate the significance of the transfer relations for structural analysis by means of three examples taken from civil engineering.

Design/methodology/approach

The first example refers to an arch bridge, the second one to the vault of a metro station and the third one to a real-scale test of a segmental tunnel ring.

Findings

The main conclusions drawn from these three examples are as follows: increasing the number of hangers/columns of the investigated arch bridge entails a reduction of the maximum bending moment of the arch, allowing it to approach, as much as possible, the desired thrust-line behavior; compared to the conventional in situ cast method, a combined precast and in situ cast method results in a decrease of the maximum bending moment of an element of the vault of the studied underground station by 46%; and the local behavior of the joints governs both the structural convergences and the bearing capacity of the tested segmental tunnel ring.

Originality/value

The three examples underline that the transfer relations significantly facilitate computer-aided engineering of circular arch structures, including arch bridges, vaults of metro stations and segmental tunnel rings.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
594

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
429

Abstract

Details

Management of Environmental Quality: An International Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1477-7835

Abstract

Details

Gender and the Violence(s) of War and Armed Conflict: More Dangerous to Be a Woman?
Type: Book
ISBN: 978-1-78769-115-5

Content available
Article
Publication date: 1 August 2001

177

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 10 no. 3
Type: Research Article
ISSN: 0965-3562

Open Access
Article
Publication date: 4 December 2019

Nadia Doytch

The authors investigate natural disasters’ impact on manufacturing and services foreign direct investment (FDI), both, in contemporaneous and time-lag contexts. Manufacturing and…

2274

Abstract

Purpose

The authors investigate natural disasters’ impact on manufacturing and services foreign direct investment (FDI), both, in contemporaneous and time-lag contexts. Manufacturing and services FDI account for different types of technology transfers, respectively, through tangible physical assets and intangible knowledge assets. This paper aims to hypothesize that natural disasters that have pronounced physical impact, have different effect on different sectoral FDI.

Design/methodology/approach

The authors merge a data set from emergency events database, which covers natural disasters occurrences with a sector-level data on FDI for 69 countries for the period 1980-2011, distinguishing between four different kinds of natural disasters such as meteorological, climate, hydrological and geophysical, as well as between different geographical regions.

Findings

Controlling for commonly accepted determinants of FDI, such as output growth, quality of institutions and natural resource abundance, the authors find that manufacturing FDI is negatively affected immediately after the disaster and positively in the longer run- a finding that is in unison with the “creative destruction” growth theory. Services FDI, on the other hand, do not show such pattern. Meteorological disasters have no effect on services FDI and climate and hydrological disasters have long-lasting negative effects. For both, manufacturing and services FDI, geophysical disasters have a positive impact on FDI in the long run.

Research limitations/implications

The study is limited to 69 countries for the period 1980-2011.

Practical implications

FDI bears tangible and intangible knowledge assets and provides means of financing, even in countries with under-developed banking systems and stock markets. FDI is impacted by climate change, manifested by intensifying and increase of frequency of natural disasters.

Social implications

Natural disasters destroy infrastructure and displace people. The rebuilding of infrastructure and intangible capital present an opportunity for upgrading.

Originality/value

This is the first study that analyzes the impact of natural disasters on sector-level FDI in a multicounty and regional context.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 10 of 12