Search results

11 – 20 of over 10000
Article
Publication date: 18 November 2013

David Tudor Gethin, Eifion Huw Jewell and Tim Charles Claypole

Printed flexible circuits that combined conventional silicon technology will enable the realisation of many value added products such as smart packaging for the fast moving…

Abstract

Purpose

Printed flexible circuits that combined conventional silicon technology will enable the realisation of many value added products such as smart packaging for the fast moving consumer goods (FMCG) industry. This paper aims to describe an investigation into integrating silicon and printable circuits for the FMCG packaging industry and this would allow products with features such as brand protection, time temperature indicators, customer feedback and visual product enhancement. Responding to interest from the FMCG packaging industry, an investigation was carried out which investigated the printing conductive silver ink on common packaging substrates.

Design/methodology/approach

Standard IC mounting patterns were screen printed using two conductive silver materials (one high silver content traditional paste and one lower silver content gel polymer) to four plastic and three paper substrates which represent common FMCG substrates (HDPE, BOPP, PET and three paper substrates). Materials were characterised in terms of material rheology whereas prints were characterised through electrical performance and printed film topology.

Findings

There was a significant interaction between the substrate, silver ink formulation and the resultant line quality, line topology and conductivity. On paper substrates, the absorption of binder into the substrate resulted in denser silver packing and higher conductivity for the paste material. Higher conductivities were obtained on the substrates capable of withstanding higher curing temperatures. On the polymer substrates higher conductivity could be obtained by lower content silver materials due to the denser particle packing in the cured ink film as a result of its higher solvent/lower solids components.

Research limitations/implications

Further work should examine the interactions for other printing processes commonly used in the FMCG industry such as rotogravure of flexography and should also examine nano particle materials. Further work should also address the mechanical adhesion of silicon logic on the substrates and bottlenecks in processing.

Practical implications

The lower silver content gel material potentially provides material cost reduction by a factor of between 4 and 7 for the same conductivity. The gel material also has potential for more uniform performance across all substrate types. Typically 3.1 Ω/cm resistance values are achieved on all substrates for 300 micron lines.

Originality/value

For those in the field of smart packaging the work has highlighted the interaction between silver materials and non PET/PEN substrates in flexible printed circuits. It has demonstrated the implications of rheology, substrate absorbency and materials processing temperature on circuit design. For those seeking printing process understanding it has provided further validation to support material transfer mechanisms in the screen printing process.

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 26 June 2009

Guangcheng Dong, Guangyin (Thomas) Lei, Xu Chen, Khai Ngo and Guo‐Quan Lu

Direct‐bond‐copper (DBC) substrates crack after about 15 thermal cycles from −55 to 250°C. The purpose of this paper is to study the phenomenology of thermal‐cracking to determine…

Abstract

Purpose

Direct‐bond‐copper (DBC) substrates crack after about 15 thermal cycles from −55 to 250°C. The purpose of this paper is to study the phenomenology of thermal‐cracking to determine the suitability of DBC for high‐temperature packaging.

Design/methodology/approach

The thermal plastic strain distribution at the edge of the DBC substrate was analyzed by using a finite element method with the Chaboche model for copper. The parameters of the Chaboche model were verified by comparing with the three‐point bending test results of DBC substrate. The thermal analyses involving different edge tail lengths indicated that susceptibility to cracking was influenced by the edge geometry of the DBC substrate.

Findings

Interface cracking was observed to initiate at the short edge of the bonded copper and propagated into the ceramic layer. The interface crack was caused by the accumulation of thermal plastic strain near the short edge. The edge tail can decrease the thermal strain along the short edge of the DBC substrate. Thermal cycling lifetime was improved greatly for the DBC substrate with 0.5 mm edge tail length compared with that without edge tail.

Research limitations/implications

The thermal cracking of DBC substrates should be studied at the microstructure level in the future.

Originality/value

Thermal cycling induced failure of DBC was analyzed. A method of alleviating the thermal plastic strain distribution on the weakest site and improving the thermal fatigue lifetime of DBC substrates under thermal cycling was proposed.

Details

Soldering & Surface Mount Technology, vol. 21 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 January 2018

Wei Qiang Lim, Mutharasu Devarajan and Shanmugan Subramani

This paper aims to study the influence of the Cu-Al2O3 film-coated Cu substrate as a thermal interface material (TIM) on the thermal and optical behaviour of the light-emitting…

178

Abstract

Purpose

This paper aims to study the influence of the Cu-Al2O3 film-coated Cu substrate as a thermal interface material (TIM) on the thermal and optical behaviour of the light-emitting diode (LED) package and the annealing effect on the thermal and optical properties of the films.

Design/methodology/approach

A layer-stacking technique has been used to deposit the Cu-Al2O3 films by means of magnetron sputtering, and the annealing process was conducted on the synthesized films.

Findings

In this paper, it was found that the un-annealed Cu-Al2O3–coated Cu substrate exhibited low value of thermal resistance compared to the bare Cu substrate and to the results of previous works. Also the annealing effect does not have a significant impact on the changes of properties of the films.

Research limitations/implications

It is deduced that the increase of the Cu layer thickness can further improve the thermal properties of the deposited film, which can reduce the thermal resistance of the package in system-level analysis.

Practical implications

The paper suggested that the Cu-Al2O3–coated Cu substrate can be used as alternative TIM for the thermal management of the application of LEDs.

Originality value

In this paper, the Cu substrate has been used as the substrate for the Cu-Al2O3 films, as the Cu substrate has higher thermal conductivity compared to the Al substrate as shown in previous work.

Details

Microelectronics International, vol. 35 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 June 2016

Bingsheng Xu, Yan Wu, Lina Zhang, Junwei Chen and Zhangfu Yuan

This research aims to provide a theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and…

207

Abstract

Purpose

This research aims to provide a theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and V-shaped substrate, which also gives guidance for those complicated welding operation objects in brazing technique.

Design/methodology/approach

Wetting experiments were performed to measure the contact angles at different temperatures of molten Sn-3.0Ag-0.5Cu wetting on the quartz substrate with an included angle of 90°. According to the experimental results, the theoretical spreading morphology of molten solder on V-shaped substrate at corresponding temperature was simulated by Surface Evolver.

Findings

The theoretical morphology profiles of the molten solder sitting on the V-shaped substrate are simulated using Surface Evolver when the molten solder reaches spreading equilibrium. The spreading mechanisms as well as the impact of surface tension and gravity on interfacial energy of the molten solder wetting on the V-shaped groove substrate are also discussed where theoretical results agree well with experiment results. The contact area between the gas and liquid phases shows a tendency of first increasing and later decreasing. Otherwise, the spreading distance and the height of the molten solder increases as the droplet volume increases as the included angle and the contact angle are given as constants, and both the interfacial energy and the gravitational energy increase as well. This research has a wide influence on predicting the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique.

Research limitations/implications

It is of very important significance in both science and practice to investigate the differences between the flat surface and V-shaped surface. Some necessary parameters including intrinsic contact angle and surface tension need to be directly measured when the droplet spreads on the flat surface. The relevant simulation conclusions on the inherent characteristics can be given based on these intrinsic parameters. Compared with the flat surface, the V-shaped substrate is chosen for further discuss on the effects of gravity on the droplet spreading behavior and the changes of apparent contact angle which can only occurs as the substrate is inclined. Therefore, this research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate.

Practical implications

The research is developed for verifying the accuracy of the model built in Surface Evolver. Based on this verified model, other researches on the spreading distance along y-axis and the contact area that are especially difficult to be experimentally measured can be directly simulated by Surface Evolver, which can provides a convenient method to discuss the changes of horizontal spreading distance, droplet height and contact area with increasing the included angle of V-shaped substrate or with increasing the droplet volume. Actually, the modeling results are calculated for supplying the theoretical parameters and technical guidance in the welding process.

Social implications

This research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate, which has a wide influence on prediction the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique.

Originality/value

Surface Evolver, can also be used to discuss the structure and spreading mechanism of droplets on V-shaped substrates, which have not been discussed before.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 1990

S. Brakspear

An investigation to evaluate the suitability of anodised aluminium as a substrate material has shown that the relatively high coefficient of thermal expansion of the aluminium…

Abstract

An investigation to evaluate the suitability of anodised aluminium as a substrate material has shown that the relatively high coefficient of thermal expansion of the aluminium caused the brittle cermet resistors to craze giving rise to unstable resistance values whereas PTF resistors appeared to suffer no ill effects. The work was implemented in conjunction with selection of low temperature thick film conductor and resistor inks to achieve the optimum combination of anodised aluminium substrate and ink system. These inks were then printed and fired on anodised aluminium, aluminium nitride and alumina substrates, and the physical and electrical properties of the inks and substrates compared. A combination of modest success, employing polymer resistors and cermet conductors, produced viable circuits with resistors of reasonable stability. A low power hybrid device, with surface mounted components, was employed to further validate the substrate/ink combinations in ongoing tests.

Details

Microelectronics International, vol. 7 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 March 1994

H. Hashemi, M. Olla, C. Spooner and D. Walshak

This paper explores the enabling technologies and thermal performance trade‐offs associated with inserting small multichip modules (MCMs) into surface mount packages. Using…

Abstract

This paper explores the enabling technologies and thermal performance trade‐offs associated with inserting small multichip modules (MCMs) into surface mount packages. Using assembly and interconnect technologies available today, ‘few‐chip’ packages can lead to less costly solutions than traditional single chip package approaches, and may be practical depending on system size and modularity constraints. The key enabling technologies required include fine‐line interconnect substrate technology, direct leadframe attachment and chip bonding to fine‐line laminate substrates, the moulding of large substrates with multiple components in a thin surface mount package, and cost‐effective cooling techniques. The thermal performance of a moulded few‐chip package is analysed and cooling methods are discussed. A screening experiment was performed in which several geometric and material parameters were studied to determine their impact on thermal performance. The size of the heat slugs appears to be the variable with the greatest effect on thermal performance. The effects of external board size, board material and the design of the internal substrate on the thermal performance of a few‐chip packaqe are also discussed.

Details

Circuit World, vol. 20 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 6 February 2009

Sony Mathew, Michael Osterman, Michael Pecht and Frank Dunlevey

The purpose of this paper is to present the results from work on a project aimed at evaluating six different copper alloy substrates coated with pure tin for tin whisker growth…

Abstract

Purpose

The purpose of this paper is to present the results from work on a project aimed at evaluating six different copper alloy substrates coated with pure tin for tin whisker growth. The influence of intermetallic growth between the copper alloy substrate and the tin‐plating on the growth of tin whiskers has been investigated.

Design/methodology/approach

The experiment consisted of six substrates of different alloys of copper, plated with bright tin including copper beryllium, cartridge brass, phosphor bronze, Cu‐Ni‐Si “7025” and Cu‐Ni‐Sn “spinodal”. The samples were mechanically stressed and then subjected to temperature humidity storage conditions for 1,000 h. These samples were then evaluated for tin whisker growth and intermetallic layer thickness.

Findings

Of the six samples five showed tin whisker growth. For these samples the intermetallic layer thickness has little effect on tin whisker growth. Sample with Cu‐Ni‐Sn “spinodal” alloy substrate showed very low whisker density and comparatively lower maximum whisker length than the other tested substrate material.

Research limitations/implications

More samples per condition should be evaluated to bolster the conclusions. For the sample without tin whisker growth, holes on the surface of the plating were observed. The holes in the plating provide an opportunity for stress relaxation after the plating process. Since stress in the plating layer is low, tin whiskers are not formed on the sample surface.

Originality/value

The paper details the tin whisker growth on six tin plated copper substrate samples. The intermetallic layer thickness for each copper alloy substrate is calculated. The relationship between the intermetallic layer thickness and tin whisker growth for the six substrates are discussed.

Details

Circuit World, vol. 35 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 1988

D.F. Crowley

This paper focuses on the economic justification for testing unpopulated hybrid substrates. The return on investment (ROI) for substrate testing is based on the high value added…

Abstract

This paper focuses on the economic justification for testing unpopulated hybrid substrates. The return on investment (ROI) for substrate testing is based on the high value added in material and labour after substrate fabrication. The data required to calculate the ROI on testing are presented. The factors influencing the selection of the test method are discussed.

Details

Microelectronics International, vol. 5 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 February 1990

W. Martin, B. Waibel and W. Laaser

Automotive ignition modules are constructed employing power transistors which are soldered to metallised ceramic substrates to achieve electrical insulation and good heat…

Abstract

Automotive ignition modules are constructed employing power transistors which are soldered to metallised ceramic substrates to achieve electrical insulation and good heat dissipation. Research activities were aimed to substitute potentially hazardous BeO ceramics by means of DCB substrates using non toxic Al2O3. To fulfill reliability requirements as well as thermal conductivity specifications, the DCB compound has to be optimised with regard to thermal stresses, material properties and interconnection technology. Complementary, appropriate test criteria have been established to characterise the performance of DCB substrates in the ignition module.

Details

Microelectronics International, vol. 7 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 19 June 2019

Giuliana Vinci and Mattia Rapa

Nowadays, hydroponic cultivation represents a widely used agricultural methodology. The purpose of this paper is to study comparatively on hydroponic substrates. This study is…

1519

Abstract

Purpose

Nowadays, hydroponic cultivation represents a widely used agricultural methodology. The purpose of this paper is to study comparatively on hydroponic substrates. This study is highlighting the best substrate to be involved in hydroponic systems, considering its costs and its sustainability.

Design/methodology/approach

Seven substrates were evaluated: rock wool, perlite, vermiculite, peat, coconut fibres, bark and sand. Life cycle assessment (life cycle inventory, life cycle impact assessment (LCIA) and life cycle costing (LCC)) was applied to evaluate the environmental and economic impact. Through the results of the impacts, the carbon footprint of each substrate was calculated.

Findings

Perlite is the most impacting substrate, as highlighted by LCIA, followed by rock wool and vermiculite. The most sustainable ones, instead, are sand and bark. Sand has the lower carbon footprint (0.0121 kg CO2 eq.); instead, bark carbon footprint results in one of the highest (1.1197 kg CO2 eq.), while in the total impact analysis this substrate seems to be highly sustainable. Also for perlite the two results are in disagreement: it has a high total impact but very low carbon footprint (0.0209 kg CO2 eq.) compared to the other substrates. From the LCC analysis it appears that peat is the most expensive substrate (€6.67/1,000 cm3), while sand is the cheaper one (€0.26/1,000 cm3).

Originality/value

The LCA and carbon footprint methodologies were applied to a growing agriculture practice. This study has highlighted the economic and environmental sustainability of seven substrates examined. This analysis has shown that sand can be the best substrate to be involved in hydroponic systems by considering its costs and its sustainability.

Details

British Food Journal, vol. 121 no. 8
Type: Research Article
ISSN: 0007-070X

Keywords

11 – 20 of over 10000