Search results

1 – 10 of over 2000
Article
Publication date: 6 April 2012

Duncan Camilleri

Power electronics are usually soldered to Al2‐O3 direct‐bond‐copper (DBC) substrates to increase thermal diffusivity, while at the same time increasing electrical isolation…

Abstract

Purpose

Power electronics are usually soldered to Al2‐O3 direct‐bond‐copper (DBC) substrates to increase thermal diffusivity, while at the same time increasing electrical isolation. However, soldering gives rise to inherent residual stresses and out‐of‐plane deformation. The purpose of this paper is to look at the effect of soldering processes of Al2‐O3 DBC substrates to copper plates and power electronics, on their thermal fatigue life and warpage.

Design/methodology/approach

A numerical thermo‐mechanical finite element model, using the Chaboche material model, was developed to identify the thermal plastic strains evolved during soldering of DBC substrates to copper plates and power electronics. The plastic strains in conjunction with established extremely low cycle fatigue life prediction model for ductile material were used to predict the number of soldering cycles to failure. The predicted out‐of‐plane deformation and number of soldering cycles to failures was compared to realistic tests.

Findings

Soldering processes drastically reduce the thermal fatigue life of DBC substrates, giving rise to thermal cracking and premature failure. In this study the soldering process considered gave rise to out‐of‐plane deformations, consequently reducing heat dispersion in soldered DBC substrate assemblies. Furthermore, soldering gave rise to interface cracking and failed after three soldering cycles. Numerical finite element models were developed and are in good agreement with the experimental tests results.

Research limitations/implications

The influence of soldering processes of DBC substrates to copper plates and electronics on the thermal fatigue life should be taken into consideration when establishing the design life of DBC substrates. Finite element models can be utilised to optimize soldering processes and optimize the design of DBC substrates.

Originality/value

The effect of soldering processes on DBC substrates was studied. A numerical finite element model used for the prediction of design life cycle and out‐of‐plane deformation is proposed.

Details

Soldering & Surface Mount Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 April 2015

Mohammad Faizan

– The purpose of this paper was to develop a physics-based mathematical model to estimate the amount of substrate metal lost during the wet soldering process.

Abstract

Purpose

The purpose of this paper was to develop a physics-based mathematical model to estimate the amount of substrate metal lost during the wet soldering process.

Design/methodology/approach

A mathematically rigorous model depicting the actual physics of the substrate/solder interaction and dissolution has been proposed to simulate the dissolution of the substrate metal in the liquid lead-free solder. The basic mass diffusion equation with the implementation of interface reaction kinetics was solved numerically using the finite volume approach. The moving interface was tracked by utilizing the coordinate transformation technique.

Findings

It was observed that the process of metal dissolution in the liquid solder was governed by two important parameters, viz., interface kinetics and long-range diffusion in the liquid solder. Non-equilibrium behavior was observed in the early stage of the process. The early stage of the dissolution process was seen as governed by interface kinetics, while diffusion became the rate-controlling mechanism at the later phase of soldering.

Practical implications

Substrate dissolution can be accurately estimated for a particular substratesolder combination and for the given process conditions. This early estimation will help in ensuring the reliability and health of the solder joint.

Originality/value

A model based on actual physics is proposed, and interface reaction kinetics has been introduced to capture the actual behavior of the process. The model will serve as the basis for two- and three-dimensional analysis, including the formation of an intermetallic compound in the solder joint.

Details

Soldering & Surface Mount Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 January 2021

Gui-sheng Gan, Liujie Jiang, Shiqi Chen, Yongqiang Deng, Donghua Yang, Zhaoqi Jiang, Huadong Cao, Mizhe Tian, Qianzhu Xu and Xin Liu

Low-Ag SAC solder will lead to a series of problems, such as increased the melting range and declined the solderability and so on. These research studies do not have too…

Abstract

Purpose

Low-Ag SAC solder will lead to a series of problems, such as increased the melting range and declined the solderability and so on. These research studies do not have too much impact on the improvement of solders’ performance but were difficult to achieve satisfactory results. It is urgent to develop new soldering technology to avoid the bottleneck of lead-free solder. low-temperature-stirring soldering and ultrasonic-assisted soldering was developed in the authors’ early work, but slag inclusion and pore would gather and grow up to lead decreasing of the shear strength. In this paper, Cu/SAC0307 +Zn power/Cu joints with ultrasonic-assisted at low-temperature was successfully achieved.

Design/methodology/approach

45um Zn-powder and SAC0307 No.4 solder powder were mixed to fill the Cu-Cu joint, and the content of Zn-powder were 0 and 5%, 7.5% and 10%, 12.5% and 15% respectively. During the soldering process under ambient atmosphere %252C the heating platform provided a constant 220%253 F and the ultrasonic vibrator applied a constant pressure of 4 MPa to the copper substrate. The soldering process was completed after holding 70 s at 300 W.

Findings

The Zn particles made the IMC at the joint interface and in the soldering seam from scallop-type Cu6Sn5 to flat-type Cu5Zn8. The shear strength of joints without Zn was only 12.43 MPa, the shear strength of joints with 10% Zn reached a peak of 34.25 MPa, and the shear strength of joints containing 10% Zn was 63.71% higher than that of joints without zinc particles, and then the shear strength decreased. In addition, with the increase of zinc content, the fracture mode of the joint changed from the brittle fracture of the original layered tears to the mixed tough and brittle fracture.

Originality/value

A new method that Zn micron-size powders and SAC0307 micron-size powders was mixed to fill the joint, and successfully achieved micro-joining of Cu/Cu under ultrasonic-assisted without flux at low-temperature.

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 2015

Agata Skwarek, Beata Synkiewicz, Jan Kulawik, Piotr Guzdek, Krzysztof Witek and Jacek Tarasiuk

The purpose of this paper is to assess the reliability of thermoelectric generators after ageing at elevated temperature and to determine the influence of the technology used…

Abstract

Purpose

The purpose of this paper is to assess the reliability of thermoelectric generators after ageing at elevated temperature and to determine the influence of the technology used (i.e. type of thermoelectric material, type of substrate and soldering technology) for thermogenerator (TGE) assembly.

Design/methodology/approach

In this paper, the Seebeck coefficient and the current voltage were measured for lead telluride doped with either manganese (PMT), germanium (PGT) or sulfur (PST) TGEs. The Seebeck coefficient measurements were taken at temperatures between 230 and 630 K.

Findings

The Seebeck coefficient determined for PMT, PGT and PST TGEs increases approximately linearly with increasing temperature and is greater by about 40 per cent for PST and about 30 per cent for PMT than in commercially available PbTe TGEs. The best outcome in terms of stability after long-term ageing was that of PMT material.

Originality/value

The choice of proper technology (i.e. thermoelectric materials, type of substrate and soldering technology) for the TGE assembly is essential for their functioning overtime and reliability.

Details

Soldering & Surface Mount Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 1998

Se‐Young Jang and Kyung‐Wook Paik

In flip‐chip interconnection on organic substrates using eutectic tin/lead solder bumps, a highly reliable under bump metallurgy (UBM) is required to maintain adhesion and solder

Abstract

In flip‐chip interconnection on organic substrates using eutectic tin/lead solder bumps, a highly reliable under bump metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1μm Al/0.2μm Ti/5μm Cu, 1μm Al/02μm Ti/1μm Cu, 1μm Al/0.2μm Ni/1μm Cu and 1μm Al/0.2μm Pd/1μm Cu, applied under eutectic tin/lead solder bumps, have been investigated with regard to their interfacial reactions and adhesion properties. The effects of the number of solder reflow cycles and the aging time on the growth of intermetallic compounds (IMCs) and on the solder ball shear strength were investigated. Good ball shear strength was obtained with 1μm Al/0.2μm Ti5μm Cu and 1μm Al/0.2μm Ni/1μm Cu even after four solder reflows or seven‐day aging at 150∞C. In contrast, 1μm Al/0.2μm Ti/1μm Cu and 1μm Al/0.2μm Pd/1μm Cu showed poor ball shear strength. The decrease of the shear strength was mainly due to the direct contact between solder and non‐wettable metals such as Ti and AL, resulting in a delamination. In this case, thin 1μm Cu and 0.2μm Pd diffusion barrier layers were completely consumed by Cu‐Sn and Pd‐Sn reaction.

Details

Soldering & Surface Mount Technology, vol. 10 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 1 October 2006

25

Abstract

Details

Soldering & Surface Mount Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 1 August 2002

56

Abstract

Details

Soldering & Surface Mount Technology, vol. 14 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1993

E. Zakel, J. Kloeser, H. Distler and H. Reichl

Due to increasing density and high demands on electrical and thermal performance, modern packages require alternative chip interconnection and substrate technologies. Flip‐chip…

Abstract

Due to increasing density and high demands on electrical and thermal performance, modern packages require alternative chip interconnection and substrate technologies. Flip‐chip (FC) bonding is a suitable method for high interconnection densities. Compared with wire bonding and TAB, FC provides the highest contact density. This is due to the possibility of using the whole chip surface for bondpads (area bumps). In this paper, an adapted FC technology on green tape ceramic substrates was investigated. In order to reduce the substrate costs, FC bonding was performed directly on the thick film metallisation without the application of thin film technology for the upper substrate layers. Two solder bump metallurgies: PbSn95/5 and Au/Sn solder bumps were applied for fluxless FC bonding on adapted substrate metallisations. Fluxless soldering is performed by single chip bonding and requires substrates with narrow planarity tolerances. An alternative method using a wet eutectic Au/Sn solder paste on the substrate and Au bumps permits the application of substrates with standard planarity tolerances used in thick film applications. A common reflow of all chips of a multichip module is possible. First reliability results of metallurgical analysis and of the mechanical and electrical behaviour of the FC contacts after thermal cycling are presented.

Details

Microelectronics International, vol. 10 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 March 2018

Balázs Illés, Agata Skwarek, Attila Géczy, László Jakab, David Bušek and Karel Dušek

The vacuum vapour phase soldering method was investigated by numerical simulations. The purpose of this study was to examine the temperature changes of the solder joints during…

Abstract

Purpose

The vacuum vapour phase soldering method was investigated by numerical simulations. The purpose of this study was to examine the temperature changes of the solder joints during the vapour suctioning process. A low pressure is used to enhance the outgassing of the trapped gas within the solder joints, which otherwise could form voids. However, the system loses heat near the suction pipe during the suctioning process, and it can result in preliminary solidification of the solder joints before the gas could escape.

Design/methodology/approach

A three-dimensional numerical flow model based on the Reynolds averaged Navier–Stokes equations with the standard k-e turbulence method was developed. The effect of the vapour suctioning on the convective heat transfer mechanism was described by the model. Temperature change of the solder joints was studied at the mostly used substrate and component combinations, as well as at different system settings.

Findings

In the function of the substrate thickness and the component size, the solder joints can lose large amount of heat during the void reduction process, which leads to preliminary solidification before the entrapped gas voids could be removed.

Research limitations/implications

The results provide setting information of vacuum vapour phase technology for appropriate and optimal applications.

Originality/value

The relationship between low pressure generation and convective heat transfer mechanism during vacuum vapour phase soldering has not been studied yet. The possible negative effects of the vapour suctioning process on the solder joint temperature are unknown.

Details

Soldering & Surface Mount Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1985

G. Caswell

This paper will outline a viable, in use, production process that focuses on the utilisation of vapour phase soldering. The process will address the soldering of surface mounted…

Abstract

This paper will outline a viable, in use, production process that focuses on the utilisation of vapour phase soldering. The process will address the soldering of surface mounted devices, the repeatability of solder joint quality, and the resultant environmental characteristics of assemblies produced using the mentioned techniques. The paper will also address the field history obtained by SMD hardware produced at the author's company, to illustrate the environments into which vapour phase soldered joints can be successfully implemented.

Details

Circuit World, vol. 11 no. 4
Type: Research Article
ISSN: 0305-6120

1 – 10 of over 2000